
Announcements

1

• Requirements Assignment Due Tonight
• Keep in mind that Code Review Assignment is also due with Project 1

• PRs should be well spaced in time for full credit
• Mid term Feedback Survey Released Today

• Please express your comments/concerns about the course so far.
• Your responses will be stored anonymously
• Due Oct 1

• Extra Credit Opportunity today

Lecture 10: Software Architecture

Dr. Nimisha Roy

CS3300 Introduction to Software Engineering

nroy9@gatech.edu

Slides adapted from Alessandro Orso

Software Architecture

• The fundamental organization of a system, embodied in
its components, their relationships to each other and the
environment, and the principles governing its design and
evolution. [ANSI/IEEE Std 1471-2000]

• Expert developers’ understanding of the system design.
[Ralph Johnson]

3

A general definition of SWA

4

Set of principal design decisions about the system

Blueprint of a software system
• Structure
• Behavior
• Interaction
• Follow business requirements

In Netflix, it’s their microservice architecture that empowers them to manage
availability, whereas, in Salesforce or Google, it’s a domain-driven design that
helps them run domain logic complexity.

Why is SWA important?

5

• Helps in maintaining high-quality code, facilitating future changes, and
enhancing the longevity of the system.

• Crucial for managing complex systems at scale, enabling smooth feature
integration over time.

Why is SWA important?

6

Tricky subject for the clients of software products - as it isn't something they
immediately perceive. Poor architecture is a major contributor to the growth of
cruft - elements of the software that impede the ability of developers to
understand the software.

• Software that
contains a lot of
cruft is much harder
to modify, leading to
features that arrive
more slowly and
with more defects.

• High internal quality
leads to faster
delivery of new
features

Why is SWA important?

7

Scenario: Suppose two similar products have been launched within the gap of a month. After
three months, they require new features to be added.
•Launch on May 31: Messy, tangled code leads to quicker launch but complicates later changes.
•Launch on June 30: Clean, well-architected code is easier to maintain but leads to a slightly
delayed launch.

What would a software development company choose to do?
Usually, despite the messy code blocks, team would go for an earlier launch that’s what
would matter for the time being - quicker launch better opportunities to monopolize market.
In the second scenario, the changes would take time as quality performance and quality code
have been given equal importance This would disturb time-to-market unfavorably. But, a
well-defined system architecture design in the form of microservices will help in easier
maintenance. your company saves time, but it will also satisfy the users with fast and regular
updates for new features.
A well-defined architecture allows for easier maintenance and consistent updates, saving time
and delivering timely results.

Temporal Aspect

8

SWA evolves over time.

At any point in time, there is a SWA, but it will change over
time

Design decisions are made, unmade, and changed over a
system’s lifetime.

Prescriptive vs. Descriptive Architecture

9

A prescriptive architecture captures the design
decisions made prior to the system’s construction
=> as- conceived SWA

A descriptive architecture describes how the
system has actually been built
=> as- implemented SWA

Architectural Evolution

10

When a system evolves, ideally its prescriptive architecture
should be modified first

In practice, this rarely happens
• Developer’s sloppiness
• Short deadlines
• Lack of documented prescriptive architectures

Architectural Degradation

11

Architectural drift : Introduction of
architectural design decisions
orthogonal to a system’s prescriptive
architecture

Architectural erosion : Introduction of
architectural design decisions that
violate a system’s prescriptive
architecture

Maintaining alignment between prescriptive and descriptive
architecture is key to avoiding "drift" and "erosion."

Architectural Recovery

12

Drift and Erosion => Degraded architecture

Keep tweaking the code (typically
disastrous)

Architectural recovery: determine
SWA from implementation and fix it

An example from the Linux Kernel

13

Prescriptive Architecture Descriptive Architecture

File System

Memory Manager Network Interface

Process Scheduler Inter process
Communication

Initialization Library

File System

Memory Manager Network Interface

Process Scheduler Inter process
Communication

Initialization Library

Another example: iRODS

14

Prescriptive Architecture Descriptive Architecture

Data grid system that was built by a biologist. It's a system for storing and accessing big data.

More examples: Hadoop

15

Open-source software framework for storage and large-scale processing of data sets

Descriptive Architecture

Final example: Bash

16

Descriptive Architecture of the command component of Bash.

Unix shell written as a free software replacement for the traditional Bourne shell

Lack of cohesion in the component

High coupling among components

17

• AI can automate documentation generation and code reviews, ensuring
descriptive architecture evolves alongside system changes.

• AI-based tools monitor system changes and suggest updates to maintain
architectural coherence.

Example: AI tools like DeepCode help developers avoid architecture
degradation by automatically detecting bad practices early in the
development cycle.

How AI can Help Maintain Architecture

Architectural Patterns

18

An architectural pattern defines “a family of systems in terms
of a pattern of structural organization; a vocabulary of
components and connectors, with constraints on how they
can be combined”
 M. Shaw and D. Garlan, 1996

Basically, named collection of architectural design decisions
applicable in a given context.

Top Architectural Patterns

Layered Microkernel

Microservices Event-Driven

Serverless

Layered Architecture
• Organizes the system into layers with related

functionality/logic associated with each layer
• In a layered system, each layer:

• Depends on the layers beneath it
• Is independent of the layers on top of it,

having no knowledge of the layers using it
• Example: Wordpress
• Standard usage: Standard apps for quick

development with fewer and inexperienced
developers; Apps with strict testability and
maintainability standards

20

Microkernel Architecture
• separated into an extended functionality (plug-

ins) and a minimal functional core comprising
standard business logic without any custom code
for complex conditional processes or exceptional
cases.

• plug-ins consist of independent components that
support the core by offering specialized
processing added features

• best suited for apps that need to be adaptive and
flexible enough to frequently changing system
requirements.

• best usage - Task and job scheduling apps,
Workflow apps, Apps that incorporate data from
various sources, transform the data and send it to
different destinations 21

Microservices

● approaches the building of multiple
small and independent apps that
work together under an entire
system. Each app or microservice has
its own responsibility, and the only
dependence between them is to
communicate.

● Allows easy scalability of development

● Best usage: Fast developing web and
business apps; Corporate data hubs
with well-established boundaries;
Websites with small components

Microservices example: AWS Cloud & Netflix

23https://docs.aws.amazon.com/whitepapers/latest/serverless-multi-tier-architectures-api-gateway-lambda/microservices-with-lambda.html

https://docs.aws.amazon.com/whitepapers/latest/serverless-multi-tier-architectures-api-gateway-lambda/microservices-with-lambda.html

Event-Driven
Architecture (EDA)

• most commonly allocated asynchronous architecture pattern for developing
highly scalable systems.

• Its approach is based on data that defines ‘events’, such as moving the scroll bar,
clicking a button, etc., and processes them asynchronously.

• involves single-purpose event processing elements that build a central unit. The
central unit then accepts all data and assigns it to separate modules handling
the specific type.

• Best usage: User interfaces; Apps that have asynchronous data flow; Complex
apps that require seamless data flow and would eventually grow 24

EDA Example: e-commerce website

A good example is an e-commerce site.
• Enables the e-commerce website to react to various sources at a time of high

demand.
• Simultaneously, it avoids any crash of the application or any over-provisioning

of resources.
Usage:
• For applications where individual data blocks interact with only a few modules.
• Helps with user interfaces.

25

Serverless Architecture

• Serverless functions are triggered by events, such as HTTP requests, database
changes, or file uploads. They execute in response to these events, making
serverless architecture inherently event-driven and highly responsive.

• E.g. is AWS Lambda, Google Cloud Functions (GAE Standard) and Azure Functions

• Allows developers to build and run
services without having to manage the
underlying infrastructure.

• Developers can write and deploy code,
while a cloud provider provisions servers
to run their applications, databases, and
storage systems at any scale.

What makes a good software architecture?
1.Functionality: The extent the software performs against its needed

purposes.
2.Usability: The level the software can be used with ease and convenience.
3.Reliability: The capability of the product to provide intended

functionality under given circumstances.
4.Supportability: The facility with which developers can transfer the

software from one platform to another with minimal or no changes.
5.Performance: The approximation by considering resource utilization,

processing speed, response time, productivity, and throughput.
6.Self-Reliance: The capability of independent activities for optimal

performance even if one is going through a downtime.
27

Leveraging AI for Software architecture

Architectural Visualization

• AI tools can automatically generate
visual representations of complex
architectures from code, helping
developers understand and improve
system design - detect bottlenecks,
dependencies, or design flaws

• AI-generated architecture diagrams
from prompts (Lucidchart, Eraser.io)
significantly reduces the time spent on
tech solution design but also provides
architects with a foundational blueprint
to kickstart their design.

Real-Time Monitoring
• AI-based tools (AWS X-ray,

Dynatrace) continuously monitor
the system’s architecture to
detect drift and architectural
degradation.

• These tools can provide real-time
alerts and recommendations for
corrective actions when
architectural principles are
violated, helping to maintain
consistency.

Leveraging AI for Software architecture

Legacy Systems

• AI (Grok, Cast AI) can help refactor
and upgrade legacy systems by
identifying outdated patterns and
suggesting modern design solutions.

• Legacy applications are often hard to
maintain due to their monolithic
design.

• AI tools can analyze the code and
provide recommendations for
migrating to modern architectures
like microservices or serverless.

Code Insights

• AI can automatically detect
code smells and restructure
messy codebases to make them
more maintainable and
efficient.

• For example, tools like
DeepCode or Codex help
refactor code to improve
readability and performance.

Leveraging AI for Software architecture

Other insights:

 https://medium.com/inspiredbrilliance/generative-ai-in-software-
architecture-dont-replace-your-architects-yet-cde0c5d462c5

https://www.linkedin.com/pulse/generative-ai-software-architecture-design-
lev-z-/

https://medium.com/inspiredbrilliance/generative-ai-in-software-architecture-dont-replace-your-architects-yet-cde0c5d462c5
https://medium.com/inspiredbrilliance/generative-ai-in-software-architecture-dont-replace-your-architects-yet-cde0c5d462c5
https://www.linkedin.com/pulse/generative-ai-software-architecture-design-lev-z-/
https://www.linkedin.com/pulse/generative-ai-software-architecture-design-lev-z-/

Software Architecture
Quizizz

31

	Slide Number 1
	Lecture 10: Software Architecture
	Software Architecture
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Top Architectural Patterns
	Layered Architecture
	Microkernel Architecture
	Microservices
	Microservices example: AWS Cloud & Netflix
	Event-Driven �Architecture (EDA)
	EDA Example: e-commerce website
	Serverless Architecture
	What makes a good software architecture?
	Leveraging AI for Software architecture
	Leveraging AI for Software architecture
	Leveraging AI for Software architecture
	Software Architecture Quizizz

