
Announcements

1

• You should start working on the Project 1 Design
Assignment
• Architecture Style; Class Diagram; Sequence Diagram;

Use Case Diagram; Component Diagram, Deployment
Diagram

• Experiment with and without AI

• GCP Assignment- Due Oct 1

• Mid term Feedback Survey- Due Oct 1

Lecture 11: Software Design: Unified
Modeling Language

Dr. Nimisha Roy

CS3300 Introduction to Software Engineering

nroy9@gatech.edu

Unified
Modeling
Language
Intended to provide a
standard way to visualize
the design of a system.

3

Unified
Modeling
Language: You
may already
know…

4

Unified
Modeling
Language:
Architectural
View

5

Unified
Modeling
Language: Low
Level Design
View

6

Architectural View –
Structural Diagram:
Component

7

Component Diagram

Slide adapted from Alessandro Orso

Static view of components and their relationships

Shows how software components are interconnected and
how they will interact with one another, emphasizing the
organization and dependencies of different components.

Can be used to represent a software architecture

8

Component Diagram: Component

Components represented as
1.A rectangle with the component's name
2.A rectangle with the component icon
3.A rectangle with the stereotype text and/or icon

https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-component-diagram/#:~:text=a%20component%20itself).-,Basic%20Concepts%20of%20Component%20Diagram,with%20optional%20compartments%20stacked%20vertically

https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-component-diagram/#:%7E:text=a%20component%20itself).-,Basic%20Concepts%20of%20Component%20Diagram,with%20optional%20compartments%20stacked%20vertically

Component Diagram: Interface

Provided interface symbols with a complete circle at their end represent an
interface that the component provides - "lollipop" symbol
Required Interface symbols with only a half circle at their end (a.k.a. sockets)
represent an interface that the component requires.

Component Diagram: Port

Ports are represented using a square along the edge of the system or a
component. A port is often used to help expose required and provided
interfaces of a component.

Component Diagram: Subsystem
Collection of components that work together to execute a set of related
functionalities and is often used to represent a larger segment of your system.
subsystem notation element has the keyword of <<subsystem>>

Component Diagram Example: ecommerce

https://www.uml-diagrams.org/component-diagrams.html

https://www.uml-diagrams.org/component-diagrams.html

Example Quiz

14

Consider a simplified social media application that consists of the following
software components:

• User Profile Component: Manages user information, profile creation, and
updates.

• Post Management Component: Handles creating, deleting, and editing posts
and content.

• Friendship Management Component: Manages friend requests, friend lists,
and related operations.

• Messaging Component: Handles direct messages between users.
• Notification Component: Manages notifications related to posts, friend

requests, and messages.

Example Quiz

15

Which of the following statements is likely accurate regarding the
dependencies between these components?

A. The Messaging Component depends on the Post Management
Component to send messages.
B. The Notification Component depends on the Friendship Management
Component to notify users of new friend requests.
C. The User Profile Component depends on the Messaging Component to
update user profiles.
D. The Post Management Component depends on the User Profile
Component to create posts.

Architectural View –
Structural Diagram:
Deployment

16

Deployment Diagram

Specifies the physical hardware on which the software system will execute. It
also determines how the software is deployed on the underlying hardware.

Physical Allocation of components to computational units

Maps the software architecture created in design to the physical system
architecture that executes it. In distributed systems, it models the distribution
of the software across the physical nodes.

17

Deployment Diagram: Notations

18

Deployment Diagram: Artifact

• Represent physical entities that are used or produced in a software development
process

• Artifacts are deployed on the nodes. The most common artifacts are as follows:
• Source files
• Executable files
• Database tables
• Scripts
• DLL files
• User manuals or documentation
• Output files

• Artifacts are labeled with the stereotype <<artifact>>, and it may have an artifact icon
on the top right corner.

• Each artifact has a filename in its specification 19

Deployment Diagram: Node

• Node is a computational resource
upon which artifacts are deployed
for execution.

• A node is a physical thing that can
execute one or more artifacts.

• Shown using the stereotype
<<device>> or <<execution
environment>>

20

Deployment Diagram Example: Working of HTML5 video
player

21

Example Quiz

22

Match the file to the corresponding Deployment Diagram parts – Artifact
or Node

BackendAPI

Google App Engine

SmartPhone

WebApp

Artifact

Node

Node

Artifact

You need to create a
component(or
package diagram)
and a deployment
diagram for your
project 1.

23

Low Level Design
View – Structural
Diagram: DCD

24

Design Class Diagram

Static, Structural View of the System

Describes

 Classes and their Structure
 Relationships among classes

Slide adapted from Alessandro Orso
25

Class Diagram: Class

CLASS NAME

- ATTRIBUTE
- ATTRIBUTE: TYPE = INITIAL VALUE
…

+ OPERATION (ARG- LIST): RESULT TYPE
…

26

Class names are identified as potential nouns from the requirements

Relationships in DCD

27

Generalization: X is a Y Inheritance between classes or
interface implementation

The relationship between the whole and the
part (parent and child), but the part can exist
independent of the whole

Aggregations: X has a Y

Composition: X has a Y
The relationship between the whole and
the part, but the part cannot exist
independent of the whole.

Dependencies: X uses Y methods of a class that use another class’s
object as a parameter .

Realization: X is a Y interface implementation

Can be dependency, aggregation, or
composition association

Associations: X and Y
are related (has)

Can be unidirectional

Generalization (Realization)

• hierarchies drawn top-down
• arrows point upward to parent
• line/arrow styles indicate whether parent is:

• class:
 solid line, black arrow

• interface:
 dashed line, white arrow (also called

realization relationship)

• often omit trivial / obvious generalization
relationships, such as drawing the Object class
as a parent

RectangularShape

- width: int
- Height: int
/ area: double
#RectangularShape (width: int,
height: int)
+ contains(p: Point): Boolean
+ getArea(): double

Rectangle

- x: int
- y: int
+ Rectangle (x: int, y: int, width: int, height: int)
+ contains(p: Point): Boolean
+ distance(r: Rectangle): double

<<interface>>
Shape

+ getArea(): double

Generalization Example

29

Generalization (Realization) Examples: Interface

30

Association Types
• aggregation: “is part of”

• child can exist independently of the parent

• composition: “is entirely made of”
• stronger version of aggregation
• the parts live and die with the whole
• child cannot exist independent of the

parent
• symbolized by a black diamond

• dependency: “uses temporarily”
• symbolized by dotted line
• often is an implementation detail, not an

intrinsic part of that object's state

https://blog.visual-paradigm.com/what-are-the-six-types-of-relationships-in-uml-class-diagrams/

https://blog.visual-paradigm.com/what-are-the-six-types-of-relationships-in-uml-class-diagrams/

Example Quiz
Scenario: You are developing an application that simulates public travel trends. Each country in the system has a
name, size, and can write laws. Each country also owns different landmarks, which have different names and
popularity levels. The landmarks must be cleaned and restored over time, and cannot move between countries.
Countries are also inhabited by people, who have a name and health level. They are able to talk to other people.
Tourists are a type of person, with the additional ability to visit landmarks. Which is the correct DCD?

Low Level Design
View – Behavioral
Diagram: Use Case
Diagram

33

Use Case Diagram: Structure
• actors as stick-figures, with their names (nouns)
• use case goals as ellipses with their names (verbs)
• line associations, connecting an actor to a use case in which that actor participates

Supporting actors to
the right: they provide
a service.

Primary actors to
the left

Offstage actor towards
the bottom

Use Case Relationships
<<Include>>

• Used when one use case is used by another use
case

• Typically used if a sub-use case or series of steps
is used by several use cases

• A uses relationship from base use case to child
use case indicates that an instance of the base
use case will include the behavior in the child
use case.

• Depicted with a directed arrow having a dotted
line. The tip of arrowhead points to the child use
case and the parent use case connected at the
base of the arrow.

35

<<Extend>>:
• Used when a use case may optionally take an

alternate path

• You can think of these as exceptions to the typical
path in the use case

• Depict with a directed arrow having a dotted line.
The tip of arrowhead points to the base use case
and the child use case is connected at the base of
the arrow.

• The stereotype "<<extends>>" identifies as an
extend relationship

• The extension point is specified in the base use
case

https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-use-case-diagram/

https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-use-case-diagram/

36
https://creately.com/blog/diagrams/use-case-diagram-relationships/

Note that we don’t
cover

“generalization” in
this class

https://creately.com/blog/diagrams/use-case-diagram-relationships/

Low Level Design
View – Behavioral
Diagram: SD

37

Sequence Diagrams

Diagrams that emphasize time ordering of messages between
classes/components

Slide adapted from Alessandro Orso
38

You need to
create a DCD,
UCD and SD for
your project 1.

39

AI considerations

• guidance for using AI tools like Lucidchart to create UML
diagrams on Canvas and website

• Progressive specific prompting may be needed
• Manual edits maybe needed
• For the assignment, in each of the 4 compulsory diagrams, you

need to compare the manually generated output vs. the 2 AI
tool-generated outputs using the following metrics -
Usability/User-friendliness, Autocompletion Rate (how much of
the generation was AI vs. manual tweaks to the AI-generated
diagram), Setup Time/Learning Curve, Number of Prompt
Iterations/Refinement, Total Time Taken.

40

	Slide Number 1
	Lecture 11: Software Design: Unified Modeling Language
	Unified Modeling Language
	Unified Modeling Language: You may already know…
	Unified Modeling Language: Architectural View
	Unified Modeling Language: Low Level Design View
	Architectural View – Structural Diagram: Component
	Component Diagram
	Component Diagram: Component
	Component Diagram: Interface
	Component Diagram: Port
	Component Diagram: Subsystem
	Component Diagram Example: ecommerce
	Slide Number 14
	Slide Number 15
	Architectural View – Structural Diagram: Deployment
	Deployment Diagram
	Deployment Diagram: Notations
	Deployment Diagram: Artifact
	Deployment Diagram: Node
	Deployment Diagram Example: Working of HTML5 video player
	Slide Number 22
	You need to create a component(or package diagram) and a deployment diagram for your project 1.
	Low Level Design View – Structural Diagram: DCD
	Design Class Diagram
	Class Diagram: Class
	Relationships in DCD
	Generalization (Realization)
	Generalization Example
	Generalization (Realization) Examples: Interface
	Association Types
	Slide Number 32
	Low Level Design View – Behavioral Diagram: Use Case Diagram
	Use Case Diagram: Structure
	Use Case Relationships
	Slide Number 36
	Low Level Design View – Behavioral Diagram: SD
	Sequence Diagrams
	You need to create a DCD, UCD and SD for your project 1.
	AI considerations

