
Announcements

• GCP assignment and midterm survey due tonight
• Project 1 due Oct 8

• Team presentations next Tuesday in class
• All Project 1 deliverables due – presentation slides before class,

report and github repository link at 11:59 PM
• No class this Thursday – work on your project 1

• Project 1 design due Oct 13th (extended)
• Sit with your teammates today in class

Project 1 Submission Guidelines
Dr. Nimisha Roy

CS3300 Introduction to Software Engineering

nroy9@gatech.edu

Submission Instructions

What is to be Submitted? – 1 presentation slide deck (ppt or
pdf not SharePoint) and the GitHub Link for your software.

Software: The goal is to provide enough material, so that
other people can use it and continue your work, if you are to
open-source it --- in other words, you should make it easy
and attractive for others to use your work.

Project 1 Rubric (17.5% of final grade)
Presentation & Demo in Class (9.7%)

Presentation (5 mins)

• Problem Statement and Frontend/Backend
technologies described (~30 secs)

• AI tools incorporated, experiments conducted,
results (~2 mins)

• Distribution of team effort described (~30 secs)

• Stay within Time limit

• Demo (~2 mins)
• Landing page
• Working Backend and Front End – All

features
• Cloud deployment

Report and Code (7.8%)

Details of the project in Report
Readme
• Release Notes - New features, Bug

Fixes, Issues
• Readme

• Install Guide
• Pre-requisites:
• Dependent libraries
• Download instructions
• Build instructions (if needed
• Installation of actual application
• Run instructions
• Troubleshooting

Presentation guidelines

• Time allotted per group: 5 minutes + 0.5 minutes for Q/A
• Include the necessary details that you think are the most important and

deserve to be discussed within the time constraints. Consider extra credit
requirements here

• Include team effort distribution.
• Workflow- Show a demo of the application, include the deployed weblink

for the demo in your ppt
• Submit your presentations on Canvas by 4:30 PM on 10/8
• Group Submission
• Come prepared/Be ready with HDMI connector, laptop etc. for demo. I will

have all presentations on the desktop, so you shouldn’t need to connect to
your laptop if you have the deployed GCP link

Software Guidelines

• Submit the GitHub Repository Link

• Include a README.txt with all details about the release notes and
install guide.

• Group submission. One person per group will submit.

Lecture 12: Design Patterns
Dr. Nimisha Roy

CS3300 Introduction to Software Engineering

nroy9@gatech.edu

Some slides adapted from refactoring.guru

What are Design Patterns?

• Typical solutions to common problems in software design. Each
pattern is like a blueprint that you can customize to solve a
particular design problem in your code.

• Patterns define industry standard strategies for solving common
problems.

• By using design patterns, you can make your code more flexible,
reusable, and easier to maintain.

8

What are Design Patterns?

• Design pattern is a problem & solution in context -
solution/strategy reuse

• Goals:
• To support reuse, of

• Successful designs
• Existing code (though less important)

• To facilitate software evolution
• Add new features easily, without breaking existing ones

• Reduce implementation dependencies between elements of
software system.

9

Design Patterns: Origin

Erich Gamma
Richard Hem
Ralph Johnson
John Vlissides
(gang of four)

Book “Design Patterns: Elements of
Reusable OO Software”

Patterns Catalogue
Fundamental Patterns

Delegation pattern
Interface pattern
Proxy pattern
…

Creational Patterns
Abstract Factory pattern
Factory Method pattern
Lazy Initialization pattern
Singleton pattern
…

Structural Patterns
Adapter pattern
Bridge pattern
Decorator pattern
…

Behavioral Patterns
Chain of responsibility pattern
Iterator pattern
Observer pattern
State Pattern
Strategy pattern
Visitor pattern
…

Concurrency Patterns
Active object pattern
Monitor object pattern
Thread pool pattern
…

Singleton Design
Pattern

12

Singleton Pattern

• A creational design
pattern

• It is used to ensure
that only one
instance of a
particular class ever
gets created and
that there is just
one (global) way to
gain access to that
instance

https://medium.com/codex/guide-implementation-of-design-patterns-in-java-821611f15f64

https://medium.com/codex/guide-implementation-of-design-patterns-in-java-821611f15f64

Singleton Class - Structure

• private constructor (to
prevent other classes in
creating new instance)

• private static instance
variable (to store one
instance)

• public static method to
gain access to instance
• creates object if

needed; returns it

Real World Examples of Singleton Class
• Logging systems: Singleton logger class ensures that all log entries are written to

a single instance of the logger. It provides a central point of access for logging
information from different parts of the application.

• Database connections: In applications that require database access, a Singleton
database connection class can be used to manage a single connection instance
throughout the system. This ensures that multiple connections are not
unnecessarily established, improving performance and resource utilization.

• Configuration managers: Singleton pattern is often utilized in configuration
management systems where global access to configuration settings is needed. A
Singleton configuration manager class provides access to configuration
parameters and ensures that the settings remain consistent across the
application.

15

Factory
Method
Pattern

16

17

18

You have a burger restaurant, and you need to create a delivery
application that delivers burgers

Not closed for modification !

19

We need 1 interface/abstract class that creates objects of a type and
creator subclasses that instantiate specific objects.

Factory method

20

Users of the restaurant can now directly (dynamically) invoke the
concrete restaurant class implementation they need and the correct
prepared burger will be returned to them.

21

Factory Method Pattern

When to use a factory method pattern

• When you don’t know ahead of time what class object you need to
instantiate OR there is some logic associated to object instantiation

• When all of the potential classes are in the same subclass hierarchy
• To centralize class selection code
• To encapsulate object creation

22

23

Decorator
Pattern

24

Decorator
Pattern

• Decorator is a structural design pattern
that lets you attach new behaviors to
objects by placing these objects inside
special wrapper objects that contain
the behaviors.

• These new behaviors are added to the
object dynamically using wrapping.

• Wrapping is just a fancy way of saying
“delegation” but with the added twist
that the delegator and the delegate
both implement the same interface

25

Problem
• Imagine that you’re working on a notification

library which lets other programs notify their
users about important events.

• The initial version of the library was based on
the Notifier class that had only a few fields, a
constructor and a single send method.

• The method could accept a message argument
from a client and send the message to a list of
emails that were passed to the notifier via its
constructor. A third-party app which acted as a
client was supposed to create and configure
the notifier object once, and then use it each
time something important happened.

26

Problem
• You realize that users of the library expect more

than just email notifications. Many of them would
like to receive an SMS about critical issues. Others
would like to be notified on Facebook and, of
course, the corporate users would love to get
Slack notifications.

• You extended the Notifier class and put the
additional notification methods into new
subclasses. Now the client was supposed to
instantiate the desired notification class and use
it for all further notifications.

• “Why can’t you use several notification types at
once? If your house is on fire, you’d probably
want to be informed through every channel.” 27

Problem
• You tried to address that problem by creating

special subclasses which combined several
notification methods within one class. However, it
quickly became apparent that this approach
would bloat the code immensely, not only the
library code but the client code as well.

• You have to find some other way to
structure notifications classes

28

Problem with Inheritance
• Extending a class is the first thing that comes to mind when you need

to alter an object’s behavior. However, inheritance has several serious
caveats that you need to be aware of.

• Inheritance is static. You can’t alter the behavior of an existing object at
runtime. You can only replace the whole object with another one that’s
created from a different subclass.

• Subclasses can have just one parent class. In most languages, inheritance
doesn’t let a class inherit behaviors of multiple classes at the same time.

• One of the ways to overcome these caveats is by
using Aggregation or Composition instead of Inheritance.

• key principle behind many design patterns, including Decorator.
29

Decorator PatternComponent: This is an
interface or abstract class
that defines the common
behavior of the objects
that can be decorated.
Concrete components and
decorators will implement
or extend this interface.

Decorator: Abstract class that also
implements the Component
interface or extends the abstract
Component class. It has a
reference to a Component object,
which represents the object it
decorates. The Decorator class
forwards requests to the
Component it decorates and can
add or modify behavior before or
after forwarding the request.

Concrete Component: Class that
implements the Component
interface or extends the abstract
Component class. It represents
the base object that can be
decorated with additional
behavior.

Solution: Decorator Pattern

31

EmailNotifier

The Strategy Pattern

32

The Strategy Pattern

33

Allows for switching between different behaviors
for accomplishing a task

The Strategy Pattern defines a family of
algorithms, encapsulates each one, and makes
them interchangeable. Strategy lets the algorithm
vary independently from clients that use it.

Structure of Strategy

34

• Algorithm is pulled out of Client. Client only makes use of the public
interface of Algorithm and is not tied to concrete subclasses.

• Client can change its behavior by switching among the various concrete
algorithms

Strategy Pattern: Another Example

35

Strategy Pattern example in Game development

36

• Character Movement: Strategy – Movement. Concrete Strategies –
walk, fly, swim, teleport….

• Weapon Fight Behavior: Strategy – Fight. Concrete Strategies – Sword,
Bow, Axe….

• AI Behavior: Strategy – Action & Reaction. Concrete Strategies - attack
aggressively, attack from range, avoid opponent….

When to use
Strategy
Pattern?

• The Strategy pattern can be used with
classes that do something specific with
different strategies
• E.g., different attack behaviors,

different robot functionalities
• It splits the different strategies (by

using an interface) from the context
• The code in the context is unchanged if

• A strategy contains a bug and is fixed
• A new strategy is added

37

The Observer
Pattern

38

Observer Pattern

• Observer is a behavioral design pattern that lets you define a
subscription mechanism to notify multiple objects about any events
that happen to the object they’re observing

• The observer pattern allows objects to keep other objects informed
about events occurring within a software system (or across multiple
systems).

• It’s dynamic in that an object can choose to receive or not receive
notifications at run-time

• Observer happens to be one of the most heavily used patterns in the
Java Development Kit

39

Observer Pattern

40

Observable/Publisher consists of 1) an array field for storing a list of references to
observer/subscriber objects and 2) several public methods which allow adding
observers to and removing them from that list.

Observer Pattern

41

Observer Pattern

• You wouldn’t want to
couple the observable
to all those observer
classes

• It is crucial that all
observers implement
the same interface,
and that the
observable
communicates with
them via that
interface

42

Observer
Pattern

Applicability

• When changes to the state of one object may require
changing other objects, and the actual set of objects is
unknown beforehand or changes dynamically

• When some objects in your app must observe others,
but only for a limited time or in specific cases

44

Choosing a Pattern

Approach
• Understand your design context
• Examine the patterns catalogue
• Identify and study related patterns
• Apply suitable pattern

Pitfalls
• Selecting wrong patterns
• Abusing patterns

You will implement
Project 2
incorporating atleast
3 design patterns

AI with design patterns –
code maintainability

• E-commerce Project Example - The
project simulates an e-commerce order
processing system. It includes classes for
handling products, orders, payment
processing, notifications, and discounts.
However, the current implementation is
tightly coupled, hard to extend, and lacks
modularity due to the absence of several
design patterns and presence of design
flaws.

• Let’s see the example Demo and how can
AI help in detection and refactoring

AI with design patterns –
code maintainability

• Inspect the project as a group for 5 mins
and list code maintainability issues

• List design patterns that could help make
maintainability better

	Announcements
	Project 1 Submission Guidelines
	Submission Instructions
	Slide Number 4
	Presentation guidelines
	Software Guidelines
	Lecture 12: Design Patterns
	What are Design Patterns?
	What are Design Patterns?
	Design Patterns: Origin
	Patterns Catalogue
	Slide Number 12
	Singleton Pattern
	Singleton Class - Structure
	Real World Examples of Singleton Class
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	When to use a factory method pattern
	Slide Number 23
	Slide Number 24
	Decorator Pattern
	Problem
	Problem
	Problem
	Problem with Inheritance
	Decorator Pattern
	Solution: Decorator Pattern
	The Strategy Pattern
	The Strategy Pattern
	Structure of Strategy
	Strategy Pattern: Another Example
	Strategy Pattern example in Game development
	When to use Strategy Pattern?
	The Observer �Pattern
	Observer Pattern
	Observer Pattern
	Observer Pattern
	Observer Pattern
	Observer�Pattern
	Applicability
	Choosing a Pattern
	You will implement Project 2 incorporating atleast 3 design patterns
	AI with design patterns – code maintainability
	AI with design patterns – code maintainability

