
Lecture 15: Black-Box Testing
Dr. Nimisha Roy 

CS3300 A/GR: Introduction to Software 
Engineering

nroy9@gatech.edu

Slides adapted from Alessandro Orso



Black- Box Testing

Slide adapted from Alessandro Orso

Advantages
- Focus on the domain
- No need for the code

- Early test design
- Prevents the highly occurring scenario of 

no-time-for-testing
- Catches logic defects
- Applicable at all granularity levels



From Specifications to Test Cases

Slide adapted from Alessandro Orso

FUNCTIONAL 
SPECIFICATION

TEST CASES



A systematic Functional-Testing Approach

Slide adapted from Alessandro Orso

FUNCTIONAL 
SPECIFICATION

INDEPENDENTLY 
TESTABLE FEATURES

RELEVANT INPUTS

TEST CASES 
SPECIFICATIONSTEST CASES

Identify

Derive

Identify

Generate

Decoupling; Automated Sub-tasks; Monitor testing process



A systematic Functional-Testing Approach

Slide adapted from Alessandro Orso

FUNCTIONAL 
SPECIFICATION

INDEPENDENTLY 
TESTABLE FEATURES

Identify

RELEVANT INPUTS

TEST CASES 
SPECIFICATIONSTEST CASES

Identify

Derive

Generate



Identifying Testable Features

How many independently testable features do we have here?

[   ]  1

[   ]  2

[   ]  3

[   ]  4

printSum (int a, int b)



Identifying Testable Features

Identify 3 possible independently testable features  for a spreadsheet

      [                                                      ]

      [                                                      ]

      [                                                      ]

Statistical Functions

Cell Merging

Chart creation



A systematic Functional-Testing Approach

Slide adapted from Alessandro Orso

FUNCTIONAL 
SPECIFICATION

INDEPENDENTLY 
TESTABLE FEATURES

RELEVANT INPUTS

TEST CASES 
SPECIFICATIONSTEST CASES

Identify

Derive

Identify

Generate



Test Data Selection

SoftwareInput Domain D Output Domain O

How to select meaningful set of inputs and corresponding outputs?

Powerful machines, why not exhaustive search?

?



Straw-Man Idea: Exhaustive Testing!

How long would it take to exhaustively test the function printSum(int a, int b)?

232 * 232 = 264 ~= 1019 tests 

1 test per nanosecond

109 tests per second
1010 seconds overall ~  600 years



Random Testing

Advantages
• Pick inputs uniformly
• All inputs considered equal
• No designer bias (developer may 

develop code based on an 
assumption, test cases may also 
be biased)



So why not random?

Same as finding many needles in a haystack



So why not random?



Systematic Partition Testing

Failure (valuable test case)
No failure

Failures are sparse in 
the space of possible 
inputs ...

... but dense in some 
parts of the space

1. Identify partitions => 2. Select 
inputs from each partition
Number of partitions << number of 
inputs

Th
e 

sp
ac

e 
of

 p
os

sib
le

 in
pu

t v
al

ue
s

(t
he

 h
ay

st
ac

k)
 

Domain is 
naturally split into 
partitions that are 

areas of
the domain 

treated 
homogeneously 
by the software



Example

1. Identify partitions:

- Size < 0 (Designer bias might let you not pick this partition)
- Size = 0
- Size > 0
- Str with length < Size
- Str with length in [Size,Size*2]
- Str with length > Size*2
- …

split (string Str, int Size)



Boundary Values

2. Select interesting Inputs from each 
partition 

Basic Idea: Errors tend to occur at the 
boundary of a sub-domain

=> Select inputs at these boundaries



Select interesting Inputs from each partition: Example

Some possible partitions:

- Size < 0 
- Size = 0
- Size > 0

split (string Str, int Size)

- Str with length < Size
- Str with length in [Size, Size*2]
- Str with length > Size*2

Some possible inputs:

- Size = -1
- Size = 1
- Size = MAXINT

- Str with length = Size- 1
- Str with length = Size
- …



A systematic Functional-Testing Approach

FUNCTIONAL 
SPECIFICATION

INDEPENDENTLY 
TESTABLE FEATURES

RELEVANT INPUTS

TEST CASES 
SPECIFICATIONSTEST CASES

Identify

Derive

Identify

Generate



3. Generate Test Case Specifications: Example

split (string Str, int Size)

Some possible inputs:

- Size = -1
- Size = 1
- Size = MAXINT

- Str with length = Size- 1
- Str with length = Size
- …

Test Case Specifications: (combine input values)

- Size = -1, Str with length = -2
- Size =  -1, Str with length = -1
- Size = 1, Str with length = 0
- Size = 1, Str with length = 1
- …



A systematic Functional-Testing Approach

Slide adapted from Alessandro Orso

FUNCTIONAL 
SPECIFICATION

INDEPENDENTLY 
TESTABLE FEATURES

RELEVANT INPUTS

TEST CASES 
SPECIFICATIONSTEST CASES

Identify

Derive

Identify

Generate



A Specific Functional Testing Black-Box Approach
The Category-Partition Method

[Ostrand & Balcer, CACM, June 1988]

Specification Test Cases



The Category-Partition Method
1. Identify independently testable features
2. Identify Categories
3. Partition Categories into choices
4. Identify constraints among choices
5. Produce/Evaluate test case specifications
6. Generate test cases from test case specifications

Test Cases



Identify Categories

split (string Str, int Size)

Input Str

- Length

- Content

Input Size

- value

Characteristics of each input element



Partition Categories into choices

split (string Str, int Size)

Input Str

- Length
- 0
- Size-1

- Content
- Only Spaces
- Special characters

Input Size

- Value
- 0
- >0
- <0
- MAXINT
- …

Interesting cases (subdomains) – boundary values



Identify Constraints among choices

Input Str

- Length
- 0

- Content
- Special characters

Input Size

- Value
- <0
- MAXINT

To Eliminate meaningless combinations & To reduce number of test cases

Three types: PROPERTY---- IF, ERROR, SINGLE

PROPERTY zerovalue

If !zerovalue

ERROR
SINGLE



Produce And Evaluate Test Case Specifications

Can be automated

Produces test frames

Example (specify the characteristic of the inputs for that test)

Test frame #45
 Input Str
  length: size -1
  content: special characters
 
 Input Size
  value: >0

Produce and evaluate test case 
specification
-how many test frames?
-add additional constraints to 
reduce the number if required



Generate Test Cases from Test Case Specification

Simple Instantiation of frames

Final result: Set of concrete tests

Example (specify the characteristic of the inputs for that test)

Test case #45
 Str = “ABCC!\n\t”
 Size = 10



The Category-Partition Method
1. Identify independently testable features
2. Identify Categories
3. Partition Categories into choices
4. Identify constraints among choices
5. Produce/Evaluate test case specifications
6. Generate test cases from test case specifications

Test Cases



Category Partition DEMO TIME
• Use category partition to generate test frames from a specification file (with 

categories, partitions, and constraints)

• Tool called TSLgenerator is used: Developed by team at UC Irvine, Oregon State, and 

Georgia Tech

• Download from: https://github.com/alexorso/tslgenerator/tree/master/Binaries 

• run the code from command prompt:  ./TSLgenerator-win8.exe

• For help: ./TSLgenerator-win8.exe –manpage

• To get number of test cases and write the test frames against your specification file: 

./TSLgenerator-win8.exe -c filename

https://github.com/alexorso/tslgenerator/tree/master/Binaries


How can we use AI tools?

1. Using LLM for Test Case Generation
• Description: GPT/Llama/Gemini/Claude can generate coherent, contextually 

relevant text based on prompts. This capability can be utilized to create 
detailed test cases from a set of functional requirements written in plain 
English, significantly speeding up the test design process.

• Example: For a feature that allows users to book flights, you might have a 
requirement: "The user should be able to select a departure and return date 
using a calendar widget." From this, LLM can generate a series of test cases, 
such as:

• Test the functionality of the calendar widget for date selection.
• Check the behavior when no dates are selected.
• Verify the system's response when past dates are selected.



How can we use AI tools?

2. Selenium with AI Extensions
• Description: Selenium is a tool for automating web browsers, allowing it to 

mimic user actions on a webpage. AI extensions can enhance Selenium by 
predicting UI changes and optimizing test flows based on previous test runs, 
reducing test maintenance.

• Example: For a web application's login page:
• Typical Selenium Test:

• Enter valid credentials and verify successful login.
• Enter invalid credentials and check for error messages.

• With AI Extensions:
• The AI identifies frequent UI changes, like button relocations or text field adjustments, 

and dynamically updates the Selenium selectors before running tests.
• Predicts potential fail points like heavy load times for login button clicks during peak 

hours and adjusts test parameters dynamically.



How can we use AI tools?
3. Postman and Postbot for API Testing
• Description: Postman is a popular tool for API testing that allows 

users to construct complex HTTP requests, examine the responses, 
and automate testing through scripts. Postbot, Postman’s AI assistant, 
can generate test scripts based on the user's API schema or past test 
scripts.

• Example: For an API endpoint that retrieves user profiles:
• API Endpoint: GET /api/user/{userID}
• Typical Test Cases Using Postman:

• "Validate response with a valid userID.“
• "Check response for a userID that does not exist.“

• AI-Generated Test Cases by Postbot:
• "Test for SQL injection vulnerabilities by inputting SQL code as the userID.“
• "Verify the handling of unusually long user ID strings."



Next Class:  

A demo of using Postman + Postbot AI for blackbox 
testing

A Model Based Black-Box Testing Approach => E.g. 
Finite State Machine

White-Box Testing


	Lecture 15: Black-Box Testing
	Black- Box Testing
	From Specifications to Test Cases
	A systematic Functional-Testing Approach
	A systematic Functional-Testing Approach
	Identifying Testable Features
	Identifying Testable Features
	A systematic Functional-Testing Approach
	Test Data Selection
	Straw-Man Idea: Exhaustive Testing!
	Random Testing
	So why not random?
	So why not random?
	Systematic Partition Testing
	Example
	Boundary Values
	Select interesting Inputs from each partition: Example
	A systematic Functional-Testing Approach
	3. Generate Test Case Specifications: Example
	A systematic Functional-Testing Approach
	A Specific Functional Testing Black-Box Approach�The Category-Partition Method
	The Category-Partition Method
	Identify Categories
	Partition Categories into choices
	Identify Constraints among choices
	Produce And Evaluate Test Case Specifications
	Generate Test Cases from Test Case Specification
	The Category-Partition Method
	Category Partition DEMO TIME
	How can we use AI tools?
	How can we use AI tools?
	How can we use AI tools?
	Next Class:  ���A demo of using Postman + Postbot AI for blackbox testing��A Model Based Black-Box Testing Approach => E.g. Finite State Machine��White-Box Testing

