
Lecture 18: Test Driven
Development; Software Refactoring
Dr. Nimisha Roy

CS3300 Introduction to Software Engineering

nroy9@gatech.edu

Slides adapted from Alessandro Orso

Transition from Waterfall to Agile has made testing easier
and more approachable

From Waterfall….

… To Agile

• Blackbox testing allows
test cases to be built
before implementation

• Agile (XP specifically)
introduces Test Driven
Development as a
solution to more testing
confidence and
motivation

What is Test Driven
Development (TDD)

• Test is written before the class to be tested, and
the developer writes unit testing code for nearly
all production code.

• Write test code
• Code that fulfills requirements

• Write functional code
• Working code that fulfills requirements

• Refactor
• Clean working code that fulfills requirements

3

TDD Basics – Unit Testing

Make it Fail
• No code

without a
failing test

1
Make it Work
• As simply as

possible

2
Make it Better
• Refactor

3

4

Red, Green, Refactor

TDD Cycle

5

Make it Fail

New
require-

ment
Write

new test

Run tests

Write
new
code

Run tests

Refactor

Run tests

Make it Work

Make it Better

Why TDD?

• Imposes developers’ discipline
• Provides incremental specification
• Avoid regression errors
• Allows for changing with confidence

6

TDD Example
Consider writing a program to score the
game of bowling
You might start with the following test

public class TestGame extends TestCase {
 public void testOneThrow() {
 Game g = new Game();
 g.addThrow(5);
 assertEquals(5, g.getScore());
 }
} 7https://home.cs.colorado.edu/~kena/classes/5828/f16/lectures/22-tdd.pdf

When you compile this program, the
test “fails” because..

the Game class does not yet exist.

But:

You have defined two methods on the
class that you want to use

https://home.cs.colorado.edu/%7Ekena/classes/5828/f16/lectures/22-tdd.pdf

TDD Example

Now you would write the Game class

public class Game {
 public void addThrow(int pins) {
 }
 public int getScore() {
 return 0;
 }
}

8

The code now compiles but the test
will still fail: getScore() returns 0 not
5

• In Test-Driven Design, we take
small, simple steps

• So, we get the test case to compile
before we get it to pass

TDD Example
Once we confirm that the test still fails, we
would then write the simplest code to make
the test case pass; that would be

public class Game {
 public void addThrow(int pins) {
 }
 public int getScore() {
 return 5;
 }
} 9

The test case now passes

But this test case is not very
helpful

TDD Example
Let's add a new test case to enable progress

public class TestGame extends TestCase {
 public void testOneThrow() {
 Game g = new Game();
 g.addThrow(5);
 assertEquals(5, g.getScore());
 }
…

10

The first test passes, but the second
case fails (since 9 ≠ 5)

…
public void testTwoThrows() {
 Game g = new Game();
 g.addThrow(5);
 g.addThrow(4);
 assertEquals(9, g.getScore());
}

}

TDD Example

11

• We have duplication of information between the first test and
the Game Class
• In particular, the number 5 appears in both places

• This duplication occurred because we were writing the
simplest code to make the test pass
• Now, in the presence of the second test case, this

duplication does more harm than good
• So, we must now refactor the code to remove this duplication

TDD Example

public class Game {
 private int score = 0;
 public void addThrow(int pins) {
 score += pins;
 }
 public int getScore() {
 return score;
 }
}

12

Both tests pass now.

Progress!

TDD Example

But now, to make additional progress, we add another test
case to the TestGame class
public void testSimpleSpare() {
 Game g = new Game()
 g.addThrow(3); g.addThrow(7); g.addThrow(3);
 assertEquals(13, g.scoreForFrame(1));
 assertEquals(16, g.getScore());
}

We’re back to the
code not compiling
due to
scoreForFrame()

• We’ll need to add a
method body for this
method and give it the
simplest
implementation that
will make all three of
our tests cases pass

Refactoring

What is Refactoring?

Slide adapted from Alessandro Orso

Program Refactored Program

Applying transformations to a program, with the goal of improving its design without changing its
functionality

Goal: Keep program readable, understandable, and maintainable. Avoid small problems soon.

Key Feature: Behavior Preserving- make sure the program works after each step; typically small steps

Behavior Preserving

Slide adapted from Alessandro Orso

How can we guarantee it?

Test the code
In agile we already have lot of test cases, rerun
before and after refactoring)
But beware: No guarantees!

Behavior Preserving Quiz

Why can’t testing guarantee that a refactoring is behavior preserving?

[] Because testing and refactoring are different activities

[] Because testing is inherently incomplete

[] Because testers are often inexperienced

Program Domain Test Cases

Why Refactoring?

Slide adapted from Alessandro Orso

Requirements Change – different design needed

Design needs to be improved – so that new
features can be added; design patterns are often
a target

Sloppiness by programmers – copy & paste for a
new method

Refactoring often has the effect of making a design more flexible

Have you used Refactoring Before?

Even renaming a class is a refactoring!
(albeit a trivial one)

Many Refactorings in Fowler’s Book

• Add parameter
• Change Association
• Reference to Value
• Value to Reference
• Collapse Hierarchy
• Consolidate Conditionals
• Procedures to Objects
• Decompose Conditionals
• Encapsulate Collection

• Encapsulate Downcast
• Encapsulate Field
• Extract Method
• Extract Class
• Inline Class
• Form Template Method
• Hide delegate
• Hide method
• Inline temp
…

Collapse Hierarchy

If a superclass and a subclass are too similar

=> Merge Them

Many Refactorings in Fowler’s Book

• Add parameter
• Change Association
• Reference to Value
• Value to Reference
• Collapse Hierarchy
• Consolidate Conditionals
• Procedures to Objects
• Decompose Conditionals
• Encapsulate Collection

• Encapsulate Downcast
• Encapsulate Field
• Extract Method
• Extract Class
• Inline Class
• Form Template Method
• Hide delegate
• Hide method
• Inline temp
…

Consolidate Conditional Expression
If there are a set of conditionals with the same results
=> Combine and extract them

Many Refactorings in Fowler’s Book

• Add parameter
• Change Association
• Reference to Value
• Value to Reference
• Collapse Hierarchy
• Consolidate Conditionals
• Procedures to Objects
• Decompose Conditionals
• Encapsulate Collection

• Encapsulate Downcast
• Encapsulate Field
• Extract Method
• Extract Class
• Inline Class
• Form Template Method
• Hide delegate
• Hide method
• Inline temp
…

Decompose Conditionals
If a conditional statement is particularly complex (can tell what but obscures why)
⇒ Extract methods from conditions, give the right name to the extracted method
⇒ Modify THEN and ELSE part of the conditional

Many Refactorings in Fowler’s Book

• Add parameter
• Change Association
• Reference to Value
• Value to Reference
• Collapse Hierarchy
• Consolidate Conditionals
• Procedures to Objects
• Decompose Conditionals
• Encapsulate Collection

• Encapsulate Downcast
• Encapsulate Field
• Extract Method
• Extract Class
• Inline Class
• Form Template Method
• Hide delegate
• Hide method
• Inline temp
…

Extract Class
If a class is doing the work of two classes
⇒ Create a new class and move the relevant fields/methods (high cohesion,

low coupling)

Many Refactorings in Fowler’s Book

• Add parameter
• Change Association
• Reference to Value
• Value to Reference
• Collapse Hierarchy
• Consolidate Conditionals
• Procedures to Objects
• Decompose Conditionals
• Encapsulate Collection

• Encapsulate Downcast
• Encapsulate Field
• Extract Method
• Extract Class
• Inline Class
• Form Template Method
• Hide delegate
• Hide method
• Inline temp
…

Inline Class

If a class is not doing much during system evolution
⇒ Move its features into another class and delete this one

Many Refactorings in Fowler’s Book

• Add parameter
• Change Association
• Reference to Value
• Value to Reference
• Collapse Hierarchy
• Consolidate Conditionals
• Procedures to Objects
• Decompose Conditionals
• Encapsulate Collection

• Encapsulate Downcast
• Encapsulate Field
• Extract Method
• Extract Class
• Inline Class
• Form Template Method
• Hide delegate
• Hide method
• Inline temp
…

Extract Method
If there is a cohesive code fragment in a large method
=> Create a method using that code fragment, replace code fragment with a
call to the method

Refactoring in IDEs
Most IDEs have a set of built-in refactoring tools

https://medium.com/android-testing-daily/refactoring-28b8a4a07d42

The Refactor menu includes:

Rename class/method/variable

Change a method signature

Move a class to a new package

Extract a method or variable

Extract a method parameter

Create a new constant

Inline a method

Safe delete

https://medium.com/android-testing-daily/refactoring-28b8a4a07d42

• Symptoms that
indicate deeper
problems in the code.

• Should be able to
sense/sniff it.

• Not bugs, indicate
weakness in design
and hence
maintenance in code.

Refactoring Industry Standards – Industry Survey

Reference
Article

• Small-scale (floss) refactoring is common ; performed by a single developer; manual
• Multiple Large-scale refactoring also common; takes months; sometimes adding new

features becomes priority

https://www.researchgate.net/publication/358293134_Industry_Experiences_with_Large-Scale_Refactoring
https://www.researchgate.net/publication/358293134_Industry_Experiences_with_Large-Scale_Refactoring

Refactoring Industry Standards – Industry Survey

Clear need for better tools and
an opportunity for refactoring
researchers to make a
difference in industry

Top Tools: ReSharper (.Net),
Jdeodrant (Eclipse Plugin), Jetbrains
Rider (.NET), Jetbrains IntelliJ IDEA
(Java), Spring Tool Suite, Stepsize

Refactoring Industry Standards – My Survey

• “Don’t touch code if it is working”
• Jetbrains integrated in Visual Studio, paid tools integrated
• Gives helpful prompts while writing code
• When refactoring?

• Approving other developers PR- suggest floss refactoring
• LSR – automated code quality check tools

• SonarQube - code quality inspection tool before completing a PR- minimum
of B

• Based on many different rules for different language (650 for Java) covering
code smells, test coverage, code security.

• Final verdict: automated tools are very important since there is no time to
make changes manually, without prompt , or compulsory quality checks

Refactoring Industry Tools

• IDEs – IntelliJ/VS Code
• SonarQube
• SonarLint – free IDE plugin for real-time refactoring
• RefactorFirst – Java source code analyzer
• Rope – Python open source library
• Piranha – Open source tool to delete stale code
• Refraction – AI based refactoring.

https://www.sonarsource.com/products/sonarqube/?_gl=1*iz827a*_gcl_au*MTcwOTc5MzI2OS4xNjk5NTU1Mjg3*_ga*MTY4NTE3NzMwNy4xNjk5NTU1Mjg3*_ga_9JZ0GZ5TC6*MTY5OTU2MzA0Mi4yLjEuMTY5OTU2MzM5OS41Ny4wLjA.
https://www.sonarsource.com/products/sonarlint/
https://github.com/refactorfirst/RefactorFirst
https://github.com/python-rope/rope
https://www.uber.com/blog/piranha/
https://www.refraction.dev/?via=topaitools

When to refactor?

• When you find you have to add a feature to a
program, and the program's code is not
structured in a convenient way to add the
feature, first refactor the program to make it easy
to add the feature, then add the feature.

• During a code review: may be the last chance to
tidy up the code before it become

• Every step of TDD

When not to
Refactor?

• When code is broken
(not a way to fix code)

• When a deadline is
close

• When there is no
reason to!

	Lecture 18: Test Driven Development; Software Refactoring
	Transition from Waterfall to Agile has made testing easier and more approachable
	What is Test Driven Development (TDD)
	TDD Basics – Unit Testing
	TDD Cycle
	Why TDD?
	TDD Example
	TDD Example
	TDD Example
	TDD Example
	TDD Example
	TDD Example
	TDD Example
	Refactoring
	What is Refactoring?
	Behavior Preserving
	Slide Number 17
	Why Refactoring?
	Have you used Refactoring Before?
	Many Refactorings in Fowler’s Book
	Collapse Hierarchy
	Many Refactorings in Fowler’s Book
	Consolidate Conditional Expression
	Many Refactorings in Fowler’s Book
	Decompose Conditionals
	Many Refactorings in Fowler’s Book
	Extract Class
	Many Refactorings in Fowler’s Book
	Inline Class
	Many Refactorings in Fowler’s Book
	Extract Method
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	When to refactor?
	Slide Number 39

