
Announcements
• Quiz 3 out all day tomorrow – Honorlock based open notes
• Code smells assignment due today. Work in class.
• Last lecture this Thursday. 
• Project 2 Due soon. Please check the class website.



Lecture 19: Code Smells

Dr. Nimisha Roy 

CS3300 Introduction to Software Engineering

nroy9@gatech.edu

Slides adapted from Alessandro Orso



Refactoring discussed last lecture..

Program Refactored Program

Small, independent techniques to apply transformations to a program, with the goal of improving its 
design without changing its functionality

Goal: Keep program readable, understandable, and maintainable. Avoid small problems soon.

Key Feature: Behavior Preserving- make sure the program works after each step; typically small steps

How to know code needs Refactoring/Indicators of Problems in code : Code Smells



What is a Code Smell?

• Martin Fowler: “a code smell is a surface indication that 
usually corresponds to a deeper problem in the system”

• Something that is quick to spot
• Indicator of a bigger problem with your code

• Generally, you find code smells when examining the code, or 
doing refactoring

4



Smells count across 
15 JavaScript projects

“A large-scale empirical study of code smells in JavaScript 
projects” by D. Johannes, et al., Software Quality Journal, 
3/22/2019

5



Refactoring and 
Code Smells

Refactoring is a systematic process of 
improving code without creating new 
functionality that can transform a mess 
into clean code and simple design. 

Code Smells help us find the problems

6
https://refactoring.guru/refactoring 

https://refactoring.guru/refactoring


Code Smell: Summary
Group name Short description Smells in group Treatment/Refactoring

Bloaters something that has grown so large 
that it cannot be effectively 
handled.

-Long method
-Large class
-Long parameter list
-Data clumps

-Extract Method
-Extract class
-Replace parameters with method call/object
- Preserve whole object

Object-
Orientation 
Abusers

cases where the solution does not 
fully exploit the possibilities of 
object-oriented design.

-Switch statements
-Refused Bequest 
(inheritance is being 
abused)

-Use polymorphism
-Push down method/-Eliminate inheritance

Change 
Preventers

smells that hinder changing or 
further developing the software.

-Divergent Change
-Shotgun surgery

-Extract Class, Method
-Move methods and fields

Dispensables represent something unnecessary 
that should be removed from the 
source code.

-Lazy class
-Data class
-Duplicated code

-Inline class
-Move method/Extract 
Method/Encapsulation
-Extract Method

Couplers a measure of how closely 
connected two routines or 
modules are

-Feature envy
-Inappropriate intimacy
-Middle man

-Move method/field
-Bidirectional to unidirectional association
-Inline Class 7



Work on the code smell 
activity



Bloaters
Large Classes, Long Methods, Data Clumps, and 
Long Parameter List

9
https://refactoring.guru/refactoring/smells 

https://refactoring.guru/refactoring/smells


Bloaters: Large Class

Signs/Symptoms
A class contains many fields/methods/lines of code. May have duplicated code.

Reasons
Developers may find it mentally less taxing to place a new feature in an existing 
class than to create a new class for the feature.

Treatment
Extract Class, Extract Subclass, Extract Method

https://refactoring.guru/smells/large-class 

https://refactoring.guru/smells/large-class


Bloaters: Long Method

Signs/Symptoms
• A method contains too many lines of code. Generally, any method longer than 

ten lines should make you start asking questions.
• Conditional operators and loops are a good clue that code can be moved to a 

separate method
• A block of code with a comment that tells you what it is doing can be replaced 

by a method

Treatment
• Extract Method

11



Bloaters: Data Clumps
• Sometimes different parts of the code contain 

identical groups of variables called clumps. (e.g., 3 
integers for RGB colors). 

• Since these data items are not encapsulated in a class, 
this increases the sizes of methods and classes. 

• To test for this, delete one of the values and see if the 
others still make sense.

Treatment
• If these variables are passed as parameters, replace 

them with an object
• Extract Class

12



Bloaters: Data Clumps

13
https://www.baeldung.com/cs/code-smells 

https://www.baeldung.com/cs/code-smells


Bloaters: Long Parameter List
Signs/Symptoms
• More than three or four parameters for a method
• Hard to understand such lists

Reasons 
• Several types of algorithm are merged in a single method
• A long list may have been created to control which algorithm (or path) is run

Treatment
• Breakup the algorithm 
• Replace Parameters with Method Call.
• Instead of passing a group of data received from another object as parameters, pass the object itself to 

the method, by using Preserve Whole Object. 14



Bloaters: Long Parameter List

15

• You get several 
values from an 
object and then pass 
them as parameters 
to a method.

• Instead, try passing 
the whole object.



Summary: Bloaters

Group 
name

Short description Smells in group Treatment

Bloaters something that has 
grown so large that 
it cannot be 
effectively 
handled.

-Long method
-Large class
-Long 
parameter list
-Data clumps

-Extract Method
-Extract class/subclass
-Replace parameters with 
method call/preserve object
- Replace with object/Extract 
Class

16



OO Abusers
Switch Statements, Refused bequest

17



OO Abusers: Switch Statements

• You have a complex switch operator or sequence of if statements.
Relatively rare use of switch and case operators is one of the hallmarks 
of object-oriented code.

Treatment
• Extract and Move Method
• Use polymorphism to control implementation (method override)

18



OO Abusers: Switch Statements

19
https://www.baeldung.com/cs/code-smells 

https://www.baeldung.com/cs/code-smells


OO Abusers: Refused bequest

• Subclasses inherit the methods and data of their parents, but they use only a 
subset of the implemented parent methods. The unwanted methods may simply 
go unused or be redefined and throw exceptions

• Possible reason: someone was motivated to create inheritance between classes 
only by the desire to reuse the code in a superclass. 

• Also violates the Liskov Substitution Principle. 

Treatment
• Push down method - Remove the method or property from Base class and move it 

to that subclass where it fits.
• Use implementable interfaces
• If inheritance makes no sense and the subclass really does have nothing in 

common with the superclass, eliminate inheritance
20



OO Abusers: Refused bequest

21

Push down method example



OO Abusers: Refused bequest

22

Remove Inheritance 
Example
You have a subclass 
that uses only a 
portion of the 
methods of its 
superclass (or it’s not 
possible to inherit 
superclass data).
Create a field and put 
a superclass object in 
it, delegate methods 
to the superclass 
object, and get rid of 
inheritance.



Summary: OO Abusers

Group 
name

Short 
description

Smells in group Treatment

Object-
Orientati
on 
Abusers

cases where 
the solution 
does not fully 
exploit the 
possibilities of 
object-
oriented 
design.

-Switch 
statements
-Refused 
Bequest

-Use polymorphism or 
Extract and move method
-Push down method or 
Eliminate inheritance or 
implement interfaces

23



Change Preventers
Shotgun Surgery & Divergent Change

24



Change Preventers: Shotgun surgery

• Every time you make a modification, you must make many small changes to 
many classes

• Symptom that functionality is spread among classes, you have to change many 
classes for a small change

• Too much coupling between classes

Treatment
• move existing class behaviors into a single class. If there’s no class appropriate 

for this, create a new one.
25



Change Preventers: Divergent Change

• Resembles Shotgun Surgery but is actually the opposite smell
• Divergent Change is when many changes are made to a single class. Shotgun 

Surgery refers to when a single change is made to many classes 
simultaneously.

• Possible reasons: due to poor program structure or “copypaste” 
programming. 

• Violates High Cohesion; May violate Single Responsibility Principle

Treatment
• Extract Class/Method

26



Summary: Change Preventers

Group 
name

Short 
description

Smells in group Treatment

Change 
Prevent
ers

smells that 
hinder 
changing or 
further 
developing 
the 
software.

-Divergent 
Change
-Shotgun 
surgery

-Extract Class, Method

-Move methods and 
fields

27



Dispensables
Duplicated code, Lazy Classes, and Data Classes

28



Dispensables: Duplicated code

• Most common
• Sections of code repeated all over the place
• Sign of amateur work
• When refactoring duplicated code, you must effectively search for all 

instances of that code

Treatment
• Extract Method

29



Dispensables: Lazy Class

• If a class doesn’t do enough to earn your attention, it should be 
deleted

• Possible reasons:
• class was designed to be fully functional but after some of the refactoring it 

has become ridiculously small
• it was designed to support future development work that never got done

Treatment
• Inline Class

30



Dispensables: Lazy Class

31

Inline Class 
Example
A class does almost 
nothing and isn’t 
responsible for 
anything, and no 
additional 
responsibilities are 
planned for it.



Dispensables: Data Class

• A class that contains only fields and crude methods for accessing them (getters 
and setters). These are simply containers for data used by other classes.

• These classes do not contain any additional functionality and can’t 
independently operate on their data.

Treatment
• Move method and Extract Method to move functionality to the data class
• Encapsulations – to hide from direct access and require that access be 

performed via getters and setters only
• Identify methods that operate on the data you're encapsulating and consider moving 

them to this new class. 
32



Summary: Dispensables

Group 
name

Short 
description

Smells in group Treatment

Dispensa
bles

represent 
something 
unnecessary 
that should be 
removed from 
the source 
code.

-Lazy class
-Data class

-Duplicated 
code

-Inline class
-Move method/Extract 
Method/Encapsulation
-Extract Method

33



Couplers
Feature envy, Inappropriate intimacy, & Middle man

34



Couplers: Feature Envy

• A method that seems more interested in a class other than the one it is in
• Most common focus of the envy is the data
• As a basic rule: if things change at the same time, you should keep them in 

the same place. 

Treatment
• Move Method: determine which class has most of the data and put the 

method with that data

35



Couplers: Feature Envy - Example

36

What is the solution?



Couplers: Inappropriate Intimacy
• One class uses the internal fields and methods of another class. Classes know too 

much about each other
• Violating Low Coupling
• Bi-directional behavior between classes creates tight inter-dependency, i.e., classes 

are tightly coupled
• Good classes should know as little about each other as possible. Such classes are 

easier to maintain and reuse.

Treatment
• Move Method/Move Field: move parts of one class to the class in which those parts 

are used. But this works only if the first class truly doesn’t need these parts.
• Change Bidirectional Association to Unidirectional

37



Couplers: Inappropriate Intimacy Example 1/2

38

License Motorist



Couplers: Inappropriate Intimacy Example 2/2

39

License Motorist



Couplers: Middle Man

• If a class performs only one action, delegating work to another class, 
why does it exist at all?

• Violating SRP
• Possible reasons: it can be the result of the useful work of a class 

being gradually moved to other classes. The class remains as an 
empty shell that doesn’t do anything other than delegate.

Treatment
• Inline Class

40



Summary: Couplers

Group 
name

Short 
description

Smells in group Treatment

Couplers a measure of 
how closely 
connected 
two routines 
or modules 
are

-Feature envy

-Inappropriate 
intimacy

-Middle man

-Move method/field

-Move methods, 
Bidirectional to 
unidirectional 
association
-Inline Class

41



Summary
Group name Short description Smells in group Treatment

Bloaters something that has grown so 
large that it cannot be effectively 
handled.

-Long method
-Large class
-Long parameter list
-Data clumps

-Extract Method
-Extract class
-Replace parameters with method call/object
- Preserve whole object

Object-
Orientation 
Abusers

cases where the solution does 
not fully exploit the possibilities 
of object-oriented design.

-Switch statements
-Refused Bequest

-Use polymorphism
-Push down method
-Eliminate inheritance

Change 
Preventers

smells that hinder changing or 
further developing the software.

-Divergent Change
-Shotgun surgery

-Extract Class, Method
-Move methods and fields

Dispensables represent something unnecessary 
that should be removed from the 
source code.

-Lazy class
-Data class
-Duplicated code

-Inline class
-Move method/Extract Method/Encapsulation
-Extract Method

Couplers a measure of how closely 
connected two routines or 
modules are

-Feature envy
-Inappropriate 
intimacy
-Middle man

-Move method/field
-Bidirectional to unidirectional association
-Inline Class

42



Top 10 Code Smells to Identify in PRs

https://axolo.co/blog/p/top-10-code-smells-to-identify-in-pull-requests-with-
code-examples 

43

https://axolo.co/blog/p/top-10-code-smells-to-identify-in-pull-requests-with-code-examples
https://axolo.co/blog/p/top-10-code-smells-to-identify-in-pull-requests-with-code-examples

	Announcements
	Lecture 19: Code Smells
	Refactoring discussed last lecture..
	What is a Code Smell?
	Smells count across 15 JavaScript projects
	Refactoring and Code Smells
	Code Smell: Summary
	Work on the code smell activity
	Bloaters
	Bloaters: Large Class
	Bloaters: Long Method
	Bloaters: Data Clumps
	Bloaters: Data Clumps
	Bloaters: Long Parameter List
	Bloaters: Long Parameter List
	Summary: Bloaters
	OO Abusers
	OO Abusers: Switch Statements
	OO Abusers: Switch Statements
	OO Abusers: Refused bequest
	OO Abusers: Refused bequest
	OO Abusers: Refused bequest
	Summary: OO Abusers
	Change Preventers
	Change Preventers: Shotgun surgery
	Change Preventers: Divergent Change
	Summary: Change Preventers
	Dispensables
	Dispensables: Duplicated code
	Dispensables: Lazy Class
	Dispensables: Lazy Class
	Dispensables: Data Class
	Summary: Dispensables
	Couplers
	Couplers: Feature Envy
	Couplers: Feature Envy - Example
	Couplers: Inappropriate Intimacy
	Couplers: Inappropriate Intimacy Example 1/2
	Couplers: Inappropriate Intimacy Example 2/2
	Couplers: Middle Man
	Summary: Couplers
	Summary
	Top 10 Code Smells to Identify in PRs

