Announcements

* Quiz 3 out all day tomorrow — Honorlock based open notes
* Code smells assignment due today. Work in class.

* Last lecture this Thursday.

* Project 2 Due soon. Please check the class website.

Georgia &
Tech]/

CS3300 Introduction to Software Engineering

Lecture 19: Code Smells

Dr. Nimisha Roy » nroy9@gatech.edu

Slides adapted from Alessandro Orso

Refactoring discussed last lecture..

»

Program Refactored Program

Small, independent techniques to apply transformations to a program, with the goal of improving its
design without changing its functionality

Goal: Keep program readable, understandable, and maintainable. Avoid small problems soon.
Key Feature: Behavior Preserving- make sure the program works after each step; typically small steps

How to know code needs Refactoring/Indicators of Problems in code : Code Smells

What is a Code Smell?

* Martin Fowler: “a code smell is a surface indication that
usually corresponds to a deeper problem in the system”

* Something that is quick to spot
* Indicator of a bigger problem with your code

* Generally, you find code smells when examining the code, or
doing refactoring

Smel lS count across “A large-scale empirical study of code smells in JavaScript

15 JavaScri pt prOjeCtS projects” by D. Johannes, et al., Software Quality Journal,
3/22/2019

This Assign i}
Assignment in Conditional Statements ||
Extra Bind
Variable Re-assign |

Chained Methods [

Complex Switch Case |
MNested Callbacks [l
Long Parameter List]
Len gty Lire:s |
Complex Code |GG
Depth |

Long Methods |

0 1000000 2000000 3000000 4000000 5

Refactoring

.f.']*\‘_ g
N ‘, Refactoring is a systematic process of improving code
“,' without creating new functionality that can transform
= 0 N

Refactoring and D 1
Code Smells 5 oyt

Dirty code is result of inexperience

£, Clean Code

Clean code is code that is easy to read,

multiplied by tight deadlines, flerstand and maintain. Clean code makes

mismanagement, and nasty gftware development predictable

shortcuts taken during the and increases the quality

Refactoring is a systematic process of
improving code without creating new
functionality that can transform a mess
into clean code and simple design.

e
R) Refactoring Process §

Performing refactoring step-by-step and
running tests after each change are key
elements of refactoring that make it
predictable and safe.

Code Smells help us find the problems

() Code Smells ‘@ Refactoring Techniques

Code smells are indicators of problems that can be Refactoring techniques describe actual refactoring
addressed during refactoring. Code smells are steps. Most refactoring techniques have their
easy to spot and fix, but they may be just pros and cons. Therefore, each gfactoring
symptoms of a deeper problem should be properly motivated and

https://refactoring.guru/refactoring

with code. applied with caution.

https://refactoring.guru/refactoring

Code Smell: Summary

Group name

Short description

Smells in group

Treatment/Refactoring

Bloaters something that has grown so large -Long method -Extract Method
that it cannot be effectively -Large class -Extract class
handled. -Long parameter list -Replace parameters with method call/object
-Data clumps - Preserve whole object
Object- cases where the solution does not -Switch statements -Use polymorphism
Orientation fully exploit the possibilities of -Refused Bequest -Push down method/-Eliminate inheritance
Abusers object-oriented design. (inheritance is being
abused)
Change smells that hinder changing or -Divergent Change -Extract Class, Method
Preventers further developing the software. -Shotgun surgery -Move methods and fields

Dispensables

represent something unnecessary
that should be removed from the
source code.

-Lazy class
-Data class
-Duplicated code

-Inline class

-Move method/Extract
Method/Encapsulation
-Extract Method

Couplers

a measure of how closely
connected two routines or
modules are

-Feature envy
-Inappropriate intimacy
-Middle man

-Move method/field

-Bidirectional to unidirectional association

-Inline Class

Work on the code smell
activity

Bloaters

Large Classes, Long Methods, Data Clumps, and
Long Parameter List

https://refactoring.guru/refactoring/smells

https://refactoring.guru/refactoring/smells

Bloaters: Large Class

Signs/Symptoms

A class contains many fields/methods/lines of code. May have duplicated code.

Reasons

Developers may find it mentally less taxing to place a new feature in an existing
class than to create a new class for the feature.

Treatment
Extract Class, Extract Subclass, Extract Method

https://refactoring.guru/smells/large-class

https://refactoring.guru/smells/large-class

Bloaters: Long Method

Signs/Symptoms

* A method contains too many lines of code. Generally, any method longer than
ten lines should make you start asking questions.

* Conditional operators and loops are a good clue that code can be moved to a
separate method

* A block of code with a comment that tells you what it is doing can be replaced
by a method

Treatment
e Extract Method

Bloaters: Data Clumps

* Sometimes different parts of the code contain

identical groups of variables called clumps. (e.g., 3 customer
integers for RGB colors).
. . . amountinvoicedIn (start : Date, end : Date)
* Since these data items are not encapsulated in a class, amountReceivedIn (start : Date, end : Date)
this increases the sizes of methods and classes. | amountOverdueln (start : Date, end : Date)

* To test for this, delete one of the values and see if the
others still make sense.

Customer

Treatment

* |f these variables are passed as parameters, replace
H H amountinvoicedIn (date : DateRange)
them Wlth an Ob]ECt amountReceivedIn (date : DateRange)

amountOverdueln (date : DateRange)

e Extract Class

12

Bloaters: Data Clumps

DateUtil {
boolean isAfter(int yearl, int monthl, int dayl, int year2, int month2, int day2) {
// implementation

int differenceInDays(int yearl, int monthl, 1int dayl, int year2, 1int month2, 1int day2) {
// implementation

Date {
// other date methods Tnt year;
int month;

int day;

DateUtil {
) boolean isAfter(Date datel, Date date2) {

// dmplementation

int differenceInDays(Date datel, Date date2) {
// implementation

// other date methods

https://www.baeldung.com/cs/code-smells

https://www.baeldung.com/cs/code-smells

Bloaters: Long Parameter List

Signs/Symptoms

 More than three or four parameters for a method

e Hard to understand such lists

Reasons

e Several types of algorithm are merged in a single method

* Along list may have been created to control which algorithm (or path) is run

Treatment

* Breakup the algorithm
* Replace Parameters with Method Call.

* Instead of passing a group of data received from another object as parameters, pass the object itself to
the method, by using Preserve Whole Object.

Bloaters: Long Parameter List

* You get several
values from an
object and then pass
them as parameters
to a method.

Long parameter lists:

function

* Instead, try passing
the whole object.

15

Summary: Bloaters

Short description Smells in group Treatment

Bloaters something that has -Long method -Extract Method

grown so large that -Large class -Extract class/subclass

it cannot be -Long -Replace parameters with
effectively parameter list method call/preserve object
handled. -Data clumps - Replace with object/Extract

Class

OO Abusers

Switch Statements, Refused bequest

OO Abusers: Switch Statements

* You have a complex switch operator or sequence of if statements.

Relatively rare use of switch and case operators is one of the hallmarks
of object-oriented code.

Treatment
* Extract and Move Method
e Use polymorphism to control implementation (method override)

OO Abusers: Switch Statements

Animal {
Animal { String makeSound() ;
String type; ¥
String makeSound() { Cat Animal {
(type) { @Ov?rride
Neat": String makeSound() {

" n ”meOW”;
izl :> }
1|dog|l :

}
"woof";
Dog Animal {
IllegalStateException(); @override
} String makeSound() {
1 "woof";
1 }

19
https://www.baeldung.com/cs/code-smells

https://www.baeldung.com/cs/code-smells

OO Abusers: Refused bequest

ANIMAL
LEGS

* Subclasses inherit the methods and data of their parents, but they use only a

subset of the implemented parent methods. The unwanted methods may simply | poé

go unused or be redefined and throw exceptions LEGS
* Possible reason: someone was motivated to create inheritance between classes | Jooon

only by the desire to reuse the code in a superclass.

* Also violates the Liskov Substitution Principle.

Treatment

* Push down method - Remove the method or property from Base class and move it
to that subclass where it fits.

e Use implementable interfaces

* If inheritance makes no sense and the subclass really does have nothing in
common with the superclass, eliminate inheritance

OO Abusers: Refused bequest

Code with Refused Bequest. Code solving the problem of Refused Bequest.

©1. @ public class Vehicle 91. public class Vehicle

02. { 02. | {

03. protected void Drive() { } 03. | }

04. ¥ 04.

05. 5. public class Car : Vehicle
06. public class Car : Vehicle :> 06. | {

07. { 07. void Drive() { }

08. } 08. }

09. 09.

10. public class Plane : Vehicle 10. public class Plane : Vehicle
11. { 11. | {

12. } 12. | }

Push down method example

21

OO Abusers: Refused bequest

Remove Inheritance
Example

You have a subclass
that uses only a
portion of the
methods of its
superclass (or it’s not
possible to inherit
superclass data).

Create a field and put
a superclass object in
it, delegate methods
to the superclass
object, and get rid of
inheritance.

Vector

ISEmpty()

AN

{ Stack]

=)

Stack

vector

Vector

ISEmpty()

[return this.vector.isEmpty(); j

ISEmpty()

22

Summary: OO Abusers

Short Smells in group Treatment

description
Object- cases where -Switch -Use polymorphism or
Orientati the solution statements Extract and move method
on does not fully -Refused -Push down method or
Abusers exploit the Bequest Eliminate inheritance or

possibilities of implement interfaces

object-

oriented

design.

Change Preventers

Shotgun Surgery & Divergent Change

Change Preventers: Shotgun surgery

* Every time you make a modification, you must make many small changes to
many classes

* Symptom that functionality is spread among classes, you have to change many
classes for a small change

* Too much coupling between classes

Treatment

* move existing class behaviors into a single class. If there’s no class appropriate
for this, create a new one.

Change Preventers: Divergent Change

* Resembles Shotgun Surgery but is actually the opposite smell

* Divergent Change is when many changes are made to a single class. Shotgun
Surgery refers to when a single change is made to many classes
simultaneously.

* Possible reasons: due to poor program structure or “copypaste”
programming.

* Violates High Cohesion; May violate Single Responsibility Principle

Treatment
e Extract Class/Method

Summary: Change Preventers

Short

Smells in group Treatment

Change
Prevent
ers

description

smells that
hinder
changing or
further
developing
the
software.

-Divergent
Change
-Shotgun
surgery

-Extract Class, Method

-Move methods and
fields

Dispensables

Duplicated code, Lazy Classes, and Data Classes

Dispensables: Duplicated code

* Most common
 Sections of code repeated all over the place
 Sign of amateur work

* When refactoring duplicated code, you must effectively search for all
instances of that code

Treatment
e Extract Method

29

(@}

U

Dispensables: Lazy Class

%

* If a class doesn’t do enough to earn your attention, it should be
deleted

* Possible reasons:

 class was designed to be fully functional but after some of the refactoring it
has become ridiculously small

* it was designed to support future development work that never got done

Treatment

* Inline Class

Dispensables: Lazy Class

Inline Class
Example

A class does almost
nothing and isn’t
responsible for
anything, and no
additional
responsibilities are
planned for it.

Person

TelephoneNumber

name

>

getTelephoneNumber()

officeAreaCode
officeNumber

getTelephoneNumber()

1

Person

name
officeAreaCode
officeNumber

getTelephoneNumber()

31

Dispensables: Data Class

A class that contains only fields and crude methods for accessing them (getters
and setters). These are simply containers for data used by other classes.

* These classes do not contain any additional functionality and can’t
independently operate on their data.

Treatment

* Move method and Extract Method to move functionality to the data class

* Encapsulations — to hide from direct access and require that access be
performed via getters and setters only

* |dentify methods that operate on the data you're encapsulating and consider moving
them to this new class.

Summary: Dispensables

Dispensa
bles

Short Smells in group Treatment

description

represent -Lazy class -Inline class

something -Data class -Move method/Extract
unnecessary Method/Encapsulation

that should be -Duplicated -Extract Method
removed from code

the source

code.

Couplers

Feature envy, Inappropriate intimacy, & Middle man

Couplers: Feature Envy

A method that seems more interested in a class other than the one it is in
* Most common focus of the envy is the data

* As a basic rule: if things change at the same time, you should keep them in
the same place.

Treatment

* Move Method: determine which class has most of the data and put the
method with that data

35

Couplers: Feature Envy - Example

public class User A{
private ContactInfo contactInfo;
public User(ContactInfo contactInfo) { this.contactInfo
public String getFullAddress() {
String streetName = contactInfo.getStreetName();
String city = contactInfo.getCity();
String state = contactInfo.getState();
return streetName + ", " + city + ", " + state;

What is the solution?

contactInfo; }

36

Couplers: Inappropriate Intimacy

* One class uses the internal fields and methods of another class. Classes know too
much about each other

* Violating Low Coupling

* Bi-directional behavior between classes creates tight inter-dependency, i.e., classes
are tightly coupled

* Good classes should know as little about each other as possible. Such classes are
easier to maintain and reuse.

Treatment

* Move Method/Move Field: move parts of one class to the class in which those parts
are used. But this works only if the first class truly doesn’t need these parts.

* Change Bidirectional Association to Unidirectional

Couplers: Inappropriate Intimacy Example 1/2

[License H Motorist }

public class License {
private Motorist motorist;
private int points = 0;
public void setMotorist(Motorist motorist) { this.motorist = motorist; }
public int getPoints() { return points; }
public void addPoints(int points) { this.points += points; }
public String getSummary() {
return motorist.getTitle() + " " + motorist.getFirstName()
+ " " + motorist.getLastName() + ", " + getPoints()
+ " points";

38

Couplers: Inappropriate Intimacy Example 2/2

public class Motorist { [License] [Motorist }

private String title;

private String firstName;
private String lastName;
private License license;
public String getTitle() { return title; }
public String getFirstName() { return firstName; }
public String getLastName() { return lastName; }
public RiskFactor getRiskFactor() {
if (license.getPoints() > 3)
return RiskFactor.HIGH_RISK;
if (license.getPoints() > 0)
return RiskFactor.MODERATE_RISK;
return RiskFactor.LOW_RISK;

39

Couplers: Middle Man

* If a class performs only one action, delegating work to another class,
why does it exist at all?

* Violating SRP

* Possible reasons: it can be the result of the useful work of a class
being gradually moved to other classes. The class remains as an
empty shell that doesn’t do anything other than delegate.

Treatment

* Inline Class

Summary: Couplers

Short Smellsin group Treatment

description

Couplers a measure of -Featureenvy -Move method/field

how closely

connected -Inappropriate -Move methods,
two routines intimacy Bidirectional to
or modules unidirectional
are association

-Middle man -Inline Class

Summary

Group name Short description Smells in group Treatment

Bloaters something that has grown so -Long method -Extract Method
large that it cannot be effectively -Large class -Extract class
handled. -Long parameter list -Replace parameters with method call/object

-Data clumps - Preserve whole object

Object- cases where the solution does -Switch statements -Use polymorphism

Orientation not fully exploit the possibilities -Refused Bequest -Push down method

Abusers of object-oriented design. -Eliminate inheritance

Change smells that hinder changing or -Divergent Change -Extract Class, Method

Preventers further developing the software. -Shotgun surgery -Move methods and fields

Dispensables represent something unnecessary -Lazy class -Inline class
that should be removed from the -Data class -Move method/Extract Method/Encapsulation
source code. -Duplicated code -Extract Method

Couplers a measure of how closely -Feature envy -Move method/field
connected two routines or -Inappropriate -Bidirectional to unidirectional association
modules are intimacy -Inline Class

-Middle man

Top 10 Code Smells to Identify in PRs

https://axolo.co/blog/p/top-10-code-smells-to-identify-in-pull-requests-with-
code-examples

43

https://axolo.co/blog/p/top-10-code-smells-to-identify-in-pull-requests-with-code-examples
https://axolo.co/blog/p/top-10-code-smells-to-identify-in-pull-requests-with-code-examples

	Announcements
	Lecture 19: Code Smells
	Refactoring discussed last lecture..
	What is a Code Smell?
	Smells count across 15 JavaScript projects
	Refactoring and Code Smells
	Code Smell: Summary
	Work on the code smell activity
	Bloaters
	Bloaters: Large Class
	Bloaters: Long Method
	Bloaters: Data Clumps
	Bloaters: Data Clumps
	Bloaters: Long Parameter List
	Bloaters: Long Parameter List
	Summary: Bloaters
	OO Abusers
	OO Abusers: Switch Statements
	OO Abusers: Switch Statements
	OO Abusers: Refused bequest
	OO Abusers: Refused bequest
	OO Abusers: Refused bequest
	Summary: OO Abusers
	Change Preventers
	Change Preventers: Shotgun surgery
	Change Preventers: Divergent Change
	Summary: Change Preventers
	Dispensables
	Dispensables: Duplicated code
	Dispensables: Lazy Class
	Dispensables: Lazy Class
	Dispensables: Data Class
	Summary: Dispensables
	Couplers
	Couplers: Feature Envy
	Couplers: Feature Envy - Example
	Couplers: Inappropriate Intimacy
	Couplers: Inappropriate Intimacy Example 1/2
	Couplers: Inappropriate Intimacy Example 2/2
	Couplers: Middle Man
	Summary: Couplers
	Summary
	Top 10 Code Smells to Identify in PRs

