
Announcements
• Last Lecture Today
• Quiz 3: Mean – 15/18 ; Std Dev: 2.2/18
• Next Classes on Nov 26 and Dec 3. These are Project 2 presentation Days.

• Team Schedule on class website.
• There is a project audience participation assignment as well.
• 10 minutes per team. Please time yourself and be within time. Hard stop at time

limit. Make sure to have a demo.

• Project 2 Deliverables:
• Project 2 Presentation – In class, ppt due at 3 PM on Nov 26.
• Project 2 Report (GitHub page link) due Dec 1 at 11:59 PM (extended)
• Project 2 Code – due Nov 26 at 11:59 PM (Share your private GitHub repository with

your mentor and me)
• Project 2 Audience Participation – due Dec 4 at 11:59 PM

Lecture 20: No Silver Bullet (1986)
Dr. Nimisha Roy

CS3300 Introduction to Software Engineering

nroy9@gatech.edu

Slides adapted from Mahdi Roozbahani

No Silver Bullet - Essence and Accident in Software
Engineering

Widely Discussed article written by Turing Award
winner Fred Brooks in 1987 discussing “Why is SE
so hard?” (~6000 citations)

Reference: http://worrydream.com/refs/Brooks-NoSilverBullet.pdf

http://worrydream.com/refs/Brooks-NoSilverBullet.pdf

Silver Bullet

Silver Bullet: A single technique or technology that by itself can deliver one
order-of magnitude improvement to some aspect of software development

One order of magnitude means 10 times

The phrase typically appears with an expectation that some new technology
or practice will easily cure a major prevailing problem

No Silver Bullet - Essence and Accident in Software
Engineering

“There is no single development, in either
technology or management technique, which by
itself promises even one order-of-magnitude
improvement within a decade in productivity, in
reliability, in simplicity”

No Silver Bullet - Essence and Accident in Software
Engineering

“We cannot expect ever to see two-fold gains every
two years in software development, as there is in
hardware development” (Moore's law)

No Silver Bullet - Moore’s Law • Started with an observation
by Moore (co-founder of Intel)
that number of transistors on
microchips doubles every 2
years.

• Implies that computers,
machines that run on
computers, and computing
power all become smaller,
faster, and cheaper with
time, as transistors on
integrated circuits become
more efficient

• Now describes a driving force
of technological and social
change, productivity, and
economic growth. (hard drive
cost per GB, cost per base of
DNA sequencing…..)

No Silver Bullet - Comparison with Hardware

• The anomaly is not that software progress is so slow, but that
computer hardware progress is so fast

• No other technology since civilization began has seen six orders of
magnitude price-performance gain in 30 years [written in 1986]

• In no other technology can one choose to take the gain in either
improved performance or in reduced costs.

No Silver Bullet - Comparison with Hardware

The need for increased computing power, AI, and digital
connectivity has resulted in significant semiconductor
market growth.

McKinsey estimates that semiconductor industry revenue will
double from $550 million in 2022 to over $1 trillion by 2030.

No Silver Bullet - Why?

• Brooks divides the problems facing Software Engineering into 2
categories

• Essence: Difficulties inherent, or intrinsic, in the nature of the software

• Accidents: Difficulties related to the production of software

• Brooks argues that most techniques attack the accidents of
software engineering, whereas essence constitute 90% of the
problems.

Essential and Accidental Complexity
Essence:
Domain Complexity
• Accounting Software – the complexity involved in accounting by nature
• Rocketry managing software – complex functionality related to the

functioning of a rocket

Accident:
Implementation Complexity
• Bugs
• Constructs that don’t exactly fit the way the domain wants them to/

Corner cases
• Threads, complexity of using AJAX requests

Why addressing “essential” problems are so difficult?

Like physical hardware limits (e.g., speed of light, heat
dissipation), there are SE problems that will never be solved

4 Issues of essential difficulty:

1. Complexity
2. Conformity
3. Changeability
4. Invisibility

Complexity

• SW is far more complex for their size
than any other human construct
because no 2 parts are alike

• SW is far more complex than HW
(computers, buildings, or
automobiles, repeated elements
abound)

• 16-bit word in HW -> 2^16 states
• State of SW is virtually infinite =>

problems verifying it

Complexity
(cont’d)

• Scaling up not merely a repetition of
the same elements in larger sizes,
but an increase in the number of
different elements

• Elements interact with each other in
some non-linear fashion, so the
complexity of the whole increases
more than linearly

Complexity
(cont’d)

• Complexity is an essential property: descriptions of
a software entity that abstract away its complexity
often abstract away its essence

• For three centuries, mathematics and the physical
sciences made great strides by constructing
simplified models of complex phenomena, deriving
properties from the models, and verifying those
properties by experiment. This paradigm worked
because the complexities ignored in the models
were not the essential properties of the
phenomena. It does not work when the
complexities are the essence.

Complexity
(cont’d)

• Increased complexity => increased
communication difficulty => SW flaws,
schedule delays, costs, …

• Complexity => difficulty of enumerating
and understanding, all possible SW states
=> unreliability

• Complexity of structure => increased
difficulty in adding functionality without
introducing side effects

• Complexity of structure => unvisualized
states that constitute reliability/security
trapdoors

• …

Complexity
(cont’d)

• Management, communication, and
personnel turnover exacerbate these
problems:

• Difficult to overview, understand
whole product, impeding
conceptual integrity

• How can you estimate without
understanding?

• How can you maintain without
understanding?

Conformity

• Physics deals with terribly complex objects even at the
"fundamental" particle level. The physicist labors on,
however, in a firm faith that there are unifying
principles to be found. Einstein argued that there must
be simplified explanations of nature, because God is
not capricious or arbitrary. No such faith comforts the
software engineer.

• To the many (arbitrary) human institutions and systems
to which it interfaces, SW is embedded in a mix of
applications, users, laws, and machines. Conceived as
most conformable

• Consider designing a software system to support an
existing business process when a new VP arrives at the
company. The VP decides to “make a mark” on the
company and changes the business process. Our
system must now conform to the (from our
perspective) arbitrary changes imposed by the VP

Conformity (cont’d)

• Other instances of conformity
• Adapting to a pre-existing environment

• Such as integrating with legacy systems
• And if the environment changes (for whatever reason), you can bet

that the software will be asked to change in response
• Implementing regulations or rules that may change from year to year
• Dealing with a change in vendor imposed by your customer

• Main Point: It is almost impossible to plan for arbitrary change;
• Instead, you just have to wait for it to occur and deal with it when it

happens

Changeability

• Software is constantly asked to change
• Other things are too, however,

manufactured things are rarely
changed after they have been created

• Instead, changes appear in later
models

• Automobiles are recalled only
infrequently

• Buildings are expensive to remodel

Changeability (cont’d)

• Pressure to change is greater
• Reality changes
• Useful SW will encourage new requests
• Long lifetime (~15 yrs) vs. HW (~4 yrs)
• SW changes viewed as “free”

• Contrast with tangible domains
• Imagine asking for a new layout of a house after the

foundation has been poured.
• Buildings can be changed. But change understood by all

to be time-consuming and expensive (and messy)

Invisibility

Invisibility (cont’d)

Essence or Accident?

[] A bug in a financial system is discovered that came from a conflict in
state/federal regulations on one type of transaction

[] A program developed in two weeks using a whiz bang new application
framework is unable to handle multiple threads since the framework is
not thread safe

[] A new version of a compiler generates code that crashes on 32-bit
architectures; the previous version did not

[] A fickle customer submits 10 change requests per week after receiving
the first usable version of a software system

E

E

A

A

Past Breakthroughs Solved Accidental Difficulties (from
Brooks)

• High-level languages (vs. bits, registers, conditions, branches)
• enhance/ease representation, improve vocabulary and how to think about

problems

• Time-sharing (vs. batch programming)
• provided quick turnaround benefits, immediacy, less context switch

• Unified programming environments
• help us better manage conceptual constructs, use programs together, but not

figure out what they should be

=> All addressed accident, not essence difficulties

Hopes for the Silver [in 1986]
• Several “hopes for the silver”, but they only made small improvements (not 10x)
• Ada

• In the end, “just” a high-level language
• Good for retraining programmers in modern design and modularization

techniques
• Does not eliminate essential complexity

• OOP
• Abstract data types (information hiding)
• Hierarchical interfaces and refined subtypes (more information)
• Higher order of accidental difficulty removed by both. Same as above.

• PC’s increasing power
• Speeds up machine-bound activities, but does not simplify the tasks

Hopes for the Silver [in 2012]
• AI - two meanings

• Use of computers to solve problems previously solved by humans (not really AI)
• Expert systems (most advanced AI)

• Expert Systems
• A computer system emulating the decision-making ability of a human expert. Designed to

solve complex problems by reasoning through bodies of knowledge, represented mainly
as if–then rules rather than through conventional procedural code. Application
independent

• Could help by suggesting designs, testing strategies, etc.
• Needs good knowledge base
• May help novice programmers benefit from the accumulated wisdom of experts

• Automatic programming
• No black magic, but somehow successful today
• Examples?
Domain Specific Languages; Program Generator

https://en.wikipedia.org/wiki/Domain-specific_language
https://yanniss.github.io/pepm04.pdf

Hopes for the Silver (2012 cont’d)
• Graphical programming

• Helpful, but SW is hard to visualize
• Lots of research in this area. New interesting articles published.

• Program verification
• Great, but does not mean error free (e.g., errors in proofs or specifications)
• Plus, it is complex

• Environments and tools
• Hierarchical file systems, uniform file formats, generalized tools, language-based

editors, integrated database systems to track details, …
• Very useful, but still attacking the accidental complexity

• Intellisense, Refactoring Tools, Code Analyzers, Code navigation tools, Code
Visualization tools

• Must attack essential complexity, which is 90% of SW

A New Silver Bullet?

• The World Wide Web? – some claim productivity increased
10-fold due to WWW.

• Automated testing?- some claim most regression errors are
avoided.

• Open-source development?
• Agile Software Development paired with Git.

A New Silver Bullet – AI assisted coding [2020]?

• Augmented Developer – AI handles situations not considered by
people who designed the code. Shazam the algorithm

• AI assisted bug finder, Vulnerabilities finder, Automatic Generation of
Tests from Code, From plain English Sentence to Compiled Machine
Code

• Some people say “It could be well the software development silver
bullet that Brooks couldn’t predict in 1987”. The productivity is
supremely enhanced. But is it an order improvement? We can’t say
yet!

• Others say: Not yet!! These solutions “make development simpler”.
The problem with technological solutions is that hiding the complexity
under the carpet is not like eliminating the complexity. Essential
complexity still isn’t targeted!

https://blog.ndepend.com/is-artificial-intelligence-assisted-coding-the-next-developer-productivity-silver-bullet/#:~:text=AI%20assisted%20coding%20might%20represent,couldn't%20predict%20in%201987.

https://blog.ndepend.com/is-artificial-intelligence-assisted-coding-the-next-developer-productivity-silver-bullet/#:%7E:text=AI%20assisted%20coding%20might%20represent,couldn't%20predict%20in%201987

Is Gen AI the New Silver Bullet?
Gen AI tools, like ChatGPT, Codex, and others, are often promoted as solutions that dramatically improve productivity,
efficiency, and quality in software development. These tools claim to enhance coding through auto-completion, bug
detection, code generation, and even full code-to-production pipelines.

Comparing Claims with Reality:

• Potential Benefits: Gen AI tools streamline repetitive tasks, assist with code suggestions, and even conduct
complex code analysis. They seem to bring productivity gains similar to those promised by previous "silver bullets"
like high-level languages and graphical programming.

• Limitations: Despite these advancements, Gen AI faces challenges, such as hallucinations (inaccurate outputs),
dependency on extensive computational resources, and limitations in understanding essential complexities in
software engineering. Like past technologies, they mainly tackle accidental complexity rather than essential
complexity.

Open Debate – Order of Magnitude Improvement?:

• Some argue that AI-assisted development could be the "silver bullet" that Fred Brooks predicted would never exist,
by delivering substantial productivity gains.

• Others caution that while AI can help simplify development, it doesn’t eliminate essential complexities like system
architecture, error-proofing, and scalability.

Is Gen AI the New Silver Bullet?

Recent Articles and Studies:

• McKinsey on AI in Software Engineering: McKinsey had suggested that AI could lead to a
productivity boost in software engineering, particularly in automated coding and testing, having
its biggest impact on software engineering [source, Aug 2023]

• Fast coding doesn’t mean cheap coding – argued against McKinsey’s reports [Medium
source, June 2023]

• VisibleThread argued that the “Silver bullet” proposition is put forward by vested interests.
Don’t believe them. [source, June 2024]

• Another Medium article states that GenAI is a game-changer in some applications, and in
others, it falls short. It is not the silver bullet. The key is to weigh the pros and cons of your
specific scenario and avoid getting swept up in market trends. [source, Aug 2024]

• Rise of AGI (Artificial General Intelligence) poses risks and threats to software engineering
and to humanity (QA, Security Vulnerabilities, Ethics). [source, Nov 2024]

https://www.mckinsey.com/featured-insights/mckinsey-explainers/whats-the-future-of-generative-ai-an-early-view-in-15-charts
https://blog.metamirror.io/mckinsey-are-wrong-that-genai-is-the-silver-bullet-fa79b4fe8ed7
https://blog.metamirror.io/mckinsey-are-wrong-that-genai-is-the-silver-bullet-fa79b4fe8ed7
https://www.linkedin.com/pulse/silver-bullets-generative-ai-hammers-hype-continues-certain-mcgovern-z57de/
https://medium.com/@akshaykokane09/why-generative-ai-isnt-the-silver-bullet-for-every-problem-baea4f1faac0#id_token=eyJhbGciOiJSUzI1NiIsImtpZCI6IjFkYzBmMTcyZThkNmVmMzgyZDZkM2EyMzFmNmMxOTdkZDY4Y2U1ZWYiLCJ0eXAiOiJKV1QifQ.eyJpc3MiOiJodHRwczovL2FjY291bnRzLmdvb2dsZS5jb20iLCJhenAiOiIyMTYyOTYwMzU4MzQtazFrNnFlMDYwczJ0cDJhMmphbTRsamRjbXMwMHN0dGcuYXBwcy5nb29nbGV1c2VyY29udGVudC5jb20iLCJhdWQiOiIyMTYyOTYwMzU4MzQtazFrNnFlMDYwczJ0cDJhMmphbTRsamRjbXMwMHN0dGcuYXBwcy5nb29nbGV1c2VyY29udGVudC5jb20iLCJzdWIiOiIxMTI2Mjk1MTI4MjU2MDA2ODM2OTYiLCJlbWFpbCI6Im5pbWlzaGEucm95OUBnbWFpbC5jb20iLCJlbWFpbF92ZXJpZmllZCI6dHJ1ZSwibmJmIjoxNzMxNjAwNzUyLCJuYW1lIjoiTmltaXNoYSBSb3kiLCJwaWN0dXJlIjoiaHR0cHM6Ly9saDMuZ29vZ2xldXNlcmNvbnRlbnQuY29tL2EvQUNnOG9jS3RuSndlcGkzLV90bzFnTVlKaXhrbTdxc3NDS2l1SkxhbTJvX1dWWUJhaG40dTFKeEs4Zz1zOTYtYyIsImdpdmVuX25hbWUiOiJOaW1pc2hhIiwiZmFtaWx5X25hbWUiOiJSb3kiLCJpYXQiOjE3MzE2MDEwNTIsImV4cCI6MTczMTYwNDY1MiwianRpIjoiMWM3MWRiMWNlZjEyYWNhNDY5MWI0MjMzY2M5ZWEwN2E4YjlhYTZjZSJ9.glaJvtPIvEx4F7REukF6RQhtIXPzZ4R_AEFTXvNoMe8xRIx2jQfaMatXDQylqbKx9ZCBEAVBTn0b0ZokMJy_MCaBsQaE2Eu7v-cvSKQIBMmusCN21oGIuj0Js1UARWWzqdDxNuVLS86ETnXRDWOCP6FXKdL1m3kvqxTN13paKe4HT5Ucv2BZGx323qzP3xiCJTRFy4_75Ie94mtnlRlQofsreO4TjC81Um02NFrGDjbXYuy28VfJ0viDe22JQB-tcEsugjp6SH0lxWrfhuVwrC3qKjkpS502OQN5vod2Uqk2vbou-Nqf0WHmuA-I50atRL2yQmCgrJMzOWS1I4N6gQ
https://www.restack.io/p/ai-risks-and-challenges-answer-agi-risks-software-engineering

Promising Attacks on the Essence
• Buy vs. build

• Hard part is requirements, specifications and design, not implementation;
amount and quality of off-the-shelf SW is increasing

• Iterative requirements refinement and rapid prototyping
• Clients do not know what they want

• Incremental development
• Grow, not build

• Cultivate great designers (focus on people)
• Better SE training
• Career mentors and career development paths

• Did they work?

Please fill out the AI End of semester survey for
+5 on Project Presentation Assignment

This is crucial for semester redesign feedback

Final extra credit
Opportunity: +1%
to everyone if 80%
of class fills out the
CIOS Survey.

Thank you for a wonderful
semester!

Good Luck for Final Presentation!

	Announcements
	Lecture 20: No Silver Bullet (1986)
	No Silver Bullet - Essence and Accident in Software Engineering
	Silver Bullet
	No Silver Bullet - Essence and Accident in Software Engineering
	No Silver Bullet - Essence and Accident in Software Engineering
	No Silver Bullet - Moore’s Law
	No Silver Bullet - Comparison with Hardware
	No Silver Bullet - Comparison with Hardware
	No Silver Bullet - Why?
	Essential and Accidental Complexity
	Why addressing “essential” problems are so difficult?
	Complexity
	Complexity (cont’d)
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Conformity
	Conformity (cont’d)
	Changeability
	Changeability (cont’d)
	Invisibility
	Invisibility (cont’d)
	Slide Number 24
	Past Breakthroughs Solved Accidental Difficulties (from Brooks)
	Hopes for the Silver [in 1986]
	Hopes for the Silver [in 2012]
	Hopes for the Silver (2012 cont’d)
	A New Silver Bullet?
	A New Silver Bullet – AI assisted coding [2020]?
	Is Gen AI the New Silver Bullet?
	Is Gen AI the New Silver Bullet?
	Promising Attacks on the Essence
	Please fill out the AI End of semester survey for +5 on Project Presentation Assignment��This is crucial for semester redesign feedback
	Final extra credit Opportunity: +1% to everyone if 80% of class fills out the CIOS Survey.�
	Thank you for a wonderful semester!

