Announcements

* Teams formed

* Mentors assigned

* Quiz 1in class today for accuracy —based on lecture

* Sign up for Google Cloud Credits ASAP. Details in an
Ed post.

» Office Hours have begun. Schedule on Canvas — in
CCB 267

* GPT 40 APIs out for each group tomorrow.




Georgia “!‘l
Tech )

CS3300 A: Introduction to Software Engineering

Lecture 03: Tools of the Trade #1

Version Control Systems, GIT, Code Review, GitHub
Actions

Dr. Nimisha Roy » nroyS@gatech.edu




Git Refresher




What are Version Control Systems?

* Atool that software developers use for keeping track of revisions of their project
* snapshots of your project over time.
* Documents, source files etc.

* Most obvious benefits:

* Option to go back and revisit
* Collaborate with multiple people




Importance

* Enforce Discipline: Manages process by which control of items passes from one person to
another

* Archive versions: store subsequent versions of source-controlled items

* Maintain Historical Information: Author of a specific version; date and time of a specific
version; etc. Retrieve and compare.

* Enables Collaboration: share data, files and documents
* Recover from accidental edits/revisions

* Conserve Disk Space: centralizing the management of the version.
* Instead of having many copies spread around, one or a few central points where these
copies are stored
* efficient algorithms to store changes, so keep many versions without taking up too
much space.




Don’ts in VCS

* Adding Derived Files
* E.g., executable file derived from compiling a set of source codes
* No reason to add it
* Adding bulky binary files
* Try to keep them local
* Creating a local copy of files/tree of files
* Don’t do this!!
* Useless, risky, confusing
* Trust the version control system




GIT Workflow Recap
| PREIED) > | o >

| Commit -a > [ push >
Workspace Index Local Repository Remote
(Working Directory) (Stage) (HEAD) Repository

< merge I< fetch |
< pull |

| diff HEAD |

L diff |

-U: also consider deleted files. Commit —a wont work if it is a new file. Why fetch and
then merge? Compare files




GIT Plugins

Install GIT: Follow instructions on https://git-scm.com/book/en/v2/Getting-Started-
Installing-Git

Egit: GIT Plugin available for Eclipse; can be downloaded at www.eclipse.github.com and can
be installed in Eclipse

oct + @ - W

E6Gtt

GitToolBox for IntelliJ: The plugin can be downloaded here. 0 Slt -+ g

Visual Studio Code has integrated source control management (SCM) and
includes Git support out-of-the-box.



https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
http://www.eclipse.github.com/
https://plugins.jetbrains.com/plugin/7499-gittoolbox/?_ga=2.150907893.232618051.1693237354-567187724.1693237354&_gl=1%2Ayge6nb%2A_ga%2ANTY3MTg3NzI0LjE2OTMyMzczNTQ.%2A_ga_9J976DJZ68%2AMTY5MzIzOTE3OS4yLjEuMTY5MzIzOTY5Mi40Ni4wLjA.
https://git-scm.com/

GitHub

* GIT hosting website. Get an account and create your remote repositories

* GitHub repository for your projects

* Provides easy-to-use FREE desktop clients for Mac and Windows
(https://desktop.github.com )

* GitHub Pages:
* One click to enable for your GitHub repo.
* Hosted directly from your GitHub repository.
* Just edit, push, and your changes are live.
* This course’s website is a GitHub Page.

* ALWAYS SET YOUR GITHUB REPOSITORY TO BE PRIVATE, UNLESS YOU ARE ABSOLUTELY
SURE YOU WANT IT PUBLIC !!!



https://desktop.github.com/

Git Basics Demo
notes on website

Branches, Merge Conflict, Code Review

10



GIT Demo — Creating Branches

By default, when you create your project you will be on main/master

* |t is good practice to have different branches for different features,
people, etc.

* To see all local branches: git branch
* To create a new branch: git branch [BRANCHNAME]
* To move to (checkout) a branch: git checkout [BRANCHNAME]

* To create a new branch and move to it: git checkout —b
[BRANCHNAME]

11



GIT Demo — Merging Branches

* Merging allows you to carry the changes in one branch over to another
branch, combining both branches

To merge two branches:

1. git checkout [NAME_OF_BRANCH_TO_MERGE_INTO]
2. git merge [NAME_OF_BRANCH_TO_BRING_IN]
Example: merging feature branch into master branch:
1. git checkout master

2. git merge feature

12



Why Code Reviews?

+ Improve Overall Quality of Code
+ Having eyes on source code that you didn't write can help identify
issues
Facilitating Team Collaboration
+ Checking out each other's code better helps you understand how
each feature is implemented
Identifying bugs early in process
Good for onboarding new developers to establish best
practices within the organization
. Significant % of your time in your job is code maintenance.

13



Pull Requests

* Tool to aggregate
branch changesand , _ .
request that the
changes be merged .
into a
different branch. |

* Done through the
GitHub GUI

Open a pull request
Create a new pull request by comparin

Merges sprint 6 changes into maste

P ZEE B @ ¢ &

14



Branch Protection

Protected branches ensure that collaborators on your repository cannot make
irrevocable changes to branches. Enabling protected branches also allows you to
enable other optional checks and requirements, like required status checks and
required reviews.

Always have a branch protection rule enforced in your main GitHub repository

branch. Settings = Branches - Branch Protection Rule = Require a pull request
before merging

Note: This is only possible for public repositories (with GitHub free) and private
rep05|tor|es (with GitHub Pro). So, sign up for GitHub Pro
ion.github.com/discount_requests/a

15



Code Review Assignment: Creating
Branches, Pull Requests, Performing Reviews

Both for Projects 1 and 2:

1. Create Separate Branches for every feature
a. You might create sub branches of these branches as you
implement new portions of each feature
2. Perform a Pull Request
3. Reviewing Code and Closing Pull Requests
4. Merging Branches [ Do not delete them until the assignment is
graded]

Let's do a quick demo of these items.

16



GitHub Actions




GitHub Actions

* GitHub Actions is an event-driven workflow automation product for

supporting the software development process in the GitHub
environment.

* Using GitHub Action, we can:

* Automate SDLC (Software Development Lifecycle) workflows
* Implement CI/CD, DevOps

£ B

The main benefit is reducing manual work and increasing consistency and reliability in
the development process.

Continuous Integration: Automatically testing and merging code changes to ensure
that the codebase is always working.

Continuous Deployment: Automatically deploying code changes to production or
staging environments to streamline and speed up deployment processes.

DevOps Integration: Integrate with DevOps practices by automating both operational
and development tasks, creating a more cohesive workflow between developers and
IT operations teams.




Anatomy of a GitHub Action

name: Example workflow

on: push

jobs: *

build: \J ()
runs-on:

v

steps:

- uses: actions/checkout@v2




Anatomy of a GitHub Action

A workflow is a unit of automation
from start to finish. It contains one
or more jobs. vent
A workflow is triggered by an event.
Jobs, in turn are made up of steps.
A step either runs a shell command
or invokes a predefined github
action. All of the steps in a job are
executed on a runner.

The runner is a server( virtual or
physical) or a container that has
been setup to understand how to
interact with GitHub Actions.

Job1
Step1

actions or shell cmd

actions or shell cmd

Step2

actions or shell cmd

Runner1

action orcmd runs

Logs results

Runner2

action orcmd runs

Logs results

il




Anatomy of a GitHub Action

A workflow is a unit of
automgtiop from’ its start A job is a section
tq f'|r?ISh, mcludmg'the of the Wworkflow
definition of what triggers and is made up of
the automgtlon (event), one or more steps
what environment or that execiite o
other aspects should be oo,

ttrz:\ken Lnto atc'count((;urlhnglc BB runner/server
e automation, and wha (ubuntu-

should happen due to the
trigger. Examples of
events include forking a
repository, pushing code
to a remote branch, or
opening a pull request.

latestisthe
fastest, and
cheapest, job
runner available.)

A step represents one
effect of the automation.
Each step consists of either
a shell script that's
executed, or a reference to
an action that's run. When
we talk about an action
(with a lowercase "a") in
this context, we mean a
reusable unit of code
provided to GitHub,
actions published by the
community, or custom
actions defined for specific
workflows.




Anatomy of a R
GitHub Action

Step 1: Run action Step 1: Run action
Step 2: Run script Step 2: Run script
Step 3: Run script Step 3: Run script

Step 4: Run action

Your workflow contains one or more jobs which can run in sequential order or in parallel.
Each job will run inside its own runner and has one or more steps that either run a script
that you define or run an action, which is a reusable extension that can simplify your
workflow.

» Steps are executed in order and are dependent on each other. Since each step is executed
on the same runner, you can share data from one step to another. For example, you can
have a step that builds your application followed by a step that tests the application that
was built.

* An action performs a complex but frequently repeated task. An action can pull your Git

repository from GitHub, set up the correct toolchain for your build environment, or set up

the authentication to your cloud provider.




Events

e Single event: on: push

e The workflow can respond to a list (multiple
events):on: [push, pull_request]

e The workflow can respond to event types
with qualifiers, such as branches, tags, or

e The workflow can execute on a specific
schedule or interval ():

e on:using standard cron
syntax
scheduled:
- cron: '30 5,15 *x x x'

file paths: e The workflow can respond to specific
on: manual events: on: [workflow-
push: dispatch, repository-
branches: dispatch]
- main e The workflow can be called from other
- 'rel/vx! workflows: on: workflow_call
= e The workflow can respond to common
N \l;(let; activities on GitHub items, such as adding
paths: a comment to a GitHub issue: on:
— xk.ts! issue_comment

*Branches and Tags: Workflows can be configured to run only on pushes to specific
branches or tags, enhancing control over where and how the automation applies. For
instance, triggering only on main or release branches.

*The pattern v1.* means that the workflow will be triggered for any tags that start
with v1. followed by any other characters. For example, this could match tags like
v1.1,v1.2,v1.2.3, etc.This is commonly used to ensure that the workflow runs for all
versions within a major version series, allowing for automated processes like

deployments or notifications specific to a version line.
*Paths:Runs the workflow only when files in specific paths are modified. In this

example, any TypeScript files (**.ts).

Cron Syntax:Uses cron format to schedule workflows at specific times, for example,
at 30 minutes past 5 AM and 3 PM every day. Useful for nightly builds or regular

maintenance tasks.

23



Steps

e Three basic steps in this workflow.

e These steps steps:
o check out a set of code, .
o setupa go environment based on a - uses: actions/checkout@v3
particular version, and . G -
o run the go process on a source file. - name: setup Go version
[ ) |n the YAML SyntaX, the -Charactef’ uses: actﬁons{setup—go@vz
indicates where a step starts. _ '
o The uses clause indicates that this step with:
invokes a predefined action. - o -
o The with clause is used to specify go-version: '1.14.0
arguments/parameters to pass to the

action. - run: go run helloworld.go

o And the run clause indicates a command
to be run in the shell.

e Runners are the physical or virtual
computers or containers where the code
for a workflow is executed. They can be
systems provided and hosted by GitHub
or they can be instances you set up,
host, and control. In a workflow file,
runners are defined for jobs simply via
the runs-on clause.

runs-on: ubuntu-latest




CREATE A
NEW
REPOSITORY

‘

TRIGGER THE
EVENT

CHECK THE
PROGRESS OF
THE
WORKFLOW
AND JOB
USING LOGS

25



YAML file content

Contents from YAML file copied from:

https://gist.github.com/weibeld/f136048d0a82aacc063f42e684e3c494

name: hello-world
on: push

jobs:

my-job:

runs-on: ubuntu-latest
steps:

- name: my-step

run: echo "Hello World!"

name : gives your workflow a name. This
name will appear in the Actions tab of your
repository.

on: push: indicates that your workflow
will execute whenever someone pushes to the
repository. This is the event

my-job: 1job triggers on pushing

steps: runs “echo Hello World” on ubuntu
terminal that prints it.

Can use Yaml format beautifier




YAMLfile : another example -

name: Post welcome comment .

on:

pull_request:

types: [opened]

permissions: .

pull-requests: write

jobs:

build:

name: Post welcome comment

runs-on: ubuntu-latest

steps:

- run: gh pr comment $PR_URL --body "Welcome to the repository!"

env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

PR_URL: ${{ github.event.pull_request.html_url }}

permissions assigns the workflow
permissions to operate on the repository
pull-requests: write gives the workflow
permission to write to pull requests. This
is needed to create the welcome
comment.

run: gh pr comment SPR_URL --body
"Welcome to the repository!“

This command uses the gh CLI to post
a comment on a pull request.

gh pr comment is the command used
to add a comment to a pull request.
SPR_URL is a variable that holds the
URL of the pull request. This URL is
used to specify on which pull request
the comment should be posted.
--body "Welcome to the repository!"
specifies the content of the comment.




YAML file: another example

build:
name: Post welcome comment
runs-on: ubuntu-latest
steps:

- run: gh pr comment $PR_URL
--body "Welcome to the repository!"

env.

GITHUB_TOKEN: s${{
secrets.GITHUB_TOKEN }}

PR_URL: ${{
github.event.pull_request.html_url
I}

Environment Variables-
GITHUB_TOKEN:GITHUB_TOKEN is used to
authenticate with GitHub to carry out actions
that require GitHub permissions, such as
commenting on a pull request.

S{{ secrets.GITHUB_TOKEN }} retrieves the
token from the repository’s encrypted
secrets. This token provides the necessary
permissions to the GitHub Actions runner
to interact with the repository on behalf of
the user.

PR_URL:PR_URLIs set to the HTML URL of
the pull request that triggered the
workflow.

S${{ github.event.pull_request.html_url }}
extracts the URL directly from the event
data that triggered the workflow. This
ensures that the comment is posted to the
correct pull request.




Setting secrets

- Secrets allow you to store sensitive
information in your organization,
repository, or repository
environments.

- Create secrets under Settings 2>
Security = Secrets = Click New
repository secret = In the Name
field, type a name for your secret >
In the Secret field, enter the value
for your secret = Click Add secret.

- Example: Add an API Key as a Secret

29



The Result!

M wiki @ Security | Insights @ Settings

Emoji change to README.md for testing workflow #2

n test-sorkflos (O

Q) Conversation 1 o

‘ bharatr21 commented 19 minutes ago

What does this PR do?

(Provide 3 description of what this PR does.

Test Plan

an here. If you changed any code, piease provide us with Ciear instructions on how you

Related PRs and Issues

ed your changes

I this PR i related to any other PR or resolves any issue or reiated to any issue link i related PR and issues here.

Have you read the Contributing Guidelines on issues?

(Write your answer here.

Verified | v 62001

@ oRthub-actons o

Weicome to the repository!

(@]

Contrittor

° All checks have passed

Edn () Code v

aorem
Revewers ]
No revens

St in progress? Convert to drat

Assignees )
No one—sugn yourset

ate 3
None yet

None yet

Miestone

o miestcre

Development ]

Successhly merging Bt pul request may ciose these
-~

None yet




GitHub Action for Continuous Integration (Cl)

A workflow for linting Markdown files, generating a report in JSON format, and then uploading
this report as an artifact.

build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Run markdown lint
run: |
npm install remark-cli remark-preset-lint-consistent

npx remark . —--use remark-preset-lint-consistent --frail

Linting is the process of running a program that analyzes code for potential errors,
stylistic issues, and generally enforcing a set of rules that aim to improve the quality
and consistency of the code.

The actions/checkout@v4 is utilized to clone your project into the GitHub Actions
runner, making it possible to execute subsequent operations on your repository files.
The npm install command is used to install three NPM packages that are necessary
for linting the Markdown files. npx remark is executed to lint all Markdown files using
the specified preset and plugin.




Failing GitHub Action with logs

requests 1 () Actions Project Wik ecurit etting

© Create ciyml © Re-run jobs +

| © buid

Run markdown lint

b Fun ngm install emsrk-cli remack-preset-Lint

added 198 pactages in

102 packages
Fun “npm fund

Unexpected caphasis marker %", expected emphasis marker remark-Lint

Emphasis marker style First gefined for




Generating and uploading test reports

When the work product of one job is needed in another, we can use the
built-in artifact storage to save artifacts created from one job to be used in
another job within the same workflow.




GitHub Action for Continuous Integration (Cl)

build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Run markdown lint
run: |
npm install remark-cli remark-preset-lint-consistent vfile-reporter-json

npx remark . --use remark-preset-lint-consistent --report vfile-reporter-json 2> remark-lint-
report.json

- uses! actions/upload-artifact@v4
with:
name: remark-lint-report

path: remark-lint-report.json

The output, which normally goes to standard error due to the --report vfile-reporter-
json option, is redirected into a JSON file named remark-lint-report.json.

After generating the lint report, the actions/upload-artifact@v4 action uploads it to
the workflow's artifacts. This file can be downloaded from the GitHub Actions run,
allowing for easy access and review of the lint results.




Passing GitHub Action

ssues D) Acti

@ Create ciyml #4 Re-run all jobs

£
E

L]
o

o o

o
(]

e o

This workflow is ideal for projects that require consistent style and formatting in their Markdown
documentation. It ensures that all Markdown files adhere to the specified linting rules, and the
lint results are made available for review through the uploaded artifact, which can improve code
review processes and maintain code quality.




Summary
*GitHub Actions

e Automates software development workflows directly within GitHub. Triggered by events like push, pull
requests, and scheduled times.
eCan be configured to run on various types of events with precise conditions (e.g., branches, tags).

eComponents of a GitHub Actions Workflow
*Workflows: Define automated processes from start to finish.
eJobs: Collections of steps within a workflow.
eSteps: Individual tasks within a job, executed sequentially.
eActions: Reusable units of code that perform specific functions in a step.

eSecrets in GitHub Actions
eUsed to store sensitive information securely. Configurable at repository or organization levels.
e Critical for maintaining security, especially with APl keys and access tokens.

ePractical Implementation: Benefits of GitHub Actions
oEfficiency: Automates repetitive and complex tasks, reducing manual effort and increasing productivity.
eReliability: Ensures consistent execution of deployment and testing workflows, minimizing human errors.
eScalability: Easily integrates with existing tools and services, supporting both small projects and large-scale
operations.
eCustomization: Highly customizable to meet specific project needs, from simple notifications to full ClI/CD
pipelines.

36



Git/GitHub
Quiz




	Slide 1: Announcements
	Slide 2: Lecture 03: Tools of the Trade #1
	Slide 3: Git Refresher
	Slide 4: What are Version Control Systems?
	Slide 5: Importance
	Slide 6: Don’ts in VCS
	Slide 7: GIT Workflow Recap
	Slide 8: GIT Plugins
	Slide 9: GitHub
	Slide 10: Git Basics Demo notes on website
	Slide 11: GIT Demo – Creating Branches
	Slide 12
	Slide 13: Why Code Reviews?
	Slide 14: Pull Requests
	Slide 15: Branch Protection
	Slide 16: Code Review Assignment: Creating Branches, Pull Requests, Performing Reviews
	Slide 17: GitHub Actions
	Slide 18: GitHub Actions
	Slide 19: Anatomy of a GitHub Action
	Slide 20: Anatomy of a GitHub Action
	Slide 21: Anatomy of a GitHub Action
	Slide 22: Anatomy of a GitHub Action
	Slide 23: Events
	Slide 24: Steps
	Slide 25: Demo
	Slide 26: YAML file content
	Slide 27: YAML file : another example
	Slide 28: YAML file: another example
	Slide 29: Setting secrets
	Slide 30: The Result!
	Slide 31: GitHub Action for Continuous Integration (CI)
	Slide 32: Failing GitHub Action with logs 
	Slide 33: Generating and uploading test reports
	Slide 34: GitHub Action for Continuous Integration (CI)
	Slide 35: Passing GitHub Action 
	Slide 36: Summary
	Slide 37: Git/GitHub Quiz

