
Announcements

• Teams formed
• Mentors assigned
• Quiz 1 in class today for accuracy –based on lecture
• Sign up for Google Cloud Credits ASAP. Details in an

Ed post.
• Office Hours have begun. Schedule on Canvas – in

CCB 267
• GPT 4o APIs out for each group tomorrow.

1

Lecture 03: Tools of the Trade #1

Dr. Nimisha Roy

CS3300 A: Introduction to Software Engineering

nroy9@gatech.edu

Version Control Systems, GIT, Code Review, GitHub
Actions

2

Git Refresher

3

What are Version Control Systems?

• A tool that software developers use for keeping track of revisions of their project

• snapshots of your project over time.

• Documents, source files etc.

• Most obvious benefits:

• Option to go back and revisit
• Collaborate with multiple people

4

Importance

• Enforce Discipline: Manages process by which control of items passes from one person to
another

• Archive versions: store subsequent versions of source-controlled items

• Maintain Historical Information: Author of a specific version; date and time of a specific
version; etc. Retrieve and compare.

• Enables Collaboration: share data, files and documents

• Recover from accidental edits/revisions

• Conserve Disk Space: centralizing the management of the version.

• Instead of having many copies spread around, one or a few central points where these
copies are stored

• efficient algorithms to store changes, so keep many versions without taking up too
much space.

5

Don’ts in VCS

• Adding Derived Files
• E.g., executable file derived from compiling a set of source codes
• No reason to add it

• Adding bulky binary files
• Try to keep them local

• Creating a local copy of files/tree of files
• Don’t do this!!
• Useless, risky, confusing
• Trust the version control system

6

fetchmerge

GIT Workflow Recap

Workspace
(Working Directory)

Index
(Stage)

Local Repository
(HEAD)

Remote
Repository

add (-U) commit

Commit -a push

pull

diff HEAD

diff

-U: also consider deleted files. Commit –a wont work if it is a new file. Why fetch and
then merge? Compare files

7

Install GIT: Follow instructions on https://git-scm.com/book/en/v2/Getting-Started-
Installing-Git

Egit: GIT Plugin available for Eclipse; can be downloaded at www.eclipse.github.com and can
be installed in Eclipse

GitToolBox for IntelliJ: The plugin can be downloaded here.

Visual Studio Code has integrated source control management (SCM) and
includes Git support out-of-the-box.

GIT Plugins

8

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
http://www.eclipse.github.com/
https://plugins.jetbrains.com/plugin/7499-gittoolbox/?_ga=2.150907893.232618051.1693237354-567187724.1693237354&_gl=1%2Ayge6nb%2A_ga%2ANTY3MTg3NzI0LjE2OTMyMzczNTQ.%2A_ga_9J976DJZ68%2AMTY5MzIzOTE3OS4yLjEuMTY5MzIzOTY5Mi40Ni4wLjA.
https://git-scm.com/

GitHub

• GIT hosting website. Get an account and create your remote repositories
• GitHub repository for your projects
• Provides easy-to-use FREE desktop clients for Mac and Windows

(https://desktop.github.com)

• GitHub Pages:
• One click to enable for your GitHub repo.
• Hosted directly from your GitHub repository.
• Just edit, push, and your changes are live.
• This course’s website is a GitHub Page.

• ALWAYS SET YOUR GITHUB REPOSITORY TO BE PRIVATE, UNLESS YOU ARE ABSOLUTELY
SURE YOU WANT IT PUBLIC !!!

9

https://desktop.github.com/

Git Basics Demo
notes on website
Branches, Merge Conflict, Code Review

10

GIT Demo – Creating Branches

• By default, when you create your project you will be on main/master

• It is good practice to have different branches for different features,
people, etc.

• To see all local branches: git branch

• To create a new branch: git branch [BRANCHNAME]

• To move to (checkout) a branch: git checkout [BRANCHNAME]

• To create a new branch and move to it: git checkout –b
[BRANCHNAME]

11

• Merging allows you to carry the changes in one branch over to another
branch, combining both branches

To merge two branches:

1. git checkout [NAME_OF_BRANCH_TO_MERGE_INTO]

2. git merge [NAME_OF_BRANCH_TO_BRING_IN]

Example: merging feature branch into master branch:

1. git checkout master

2. git merge feature

GIT Demo – Merging Branches

12

13

Pull Requests

• Tool to aggregate
branch changes and
request that the
changes be merged
into a
different branch.

•Done through the
GitHub GUI

14

15

16

GitHub Actions

17

The main benefit is reducing manual work and increasing consistency and reliability in
the development process.
Continuous Integration: Automatically testing and merging code changes to ensure
that the codebase is always working.
Continuous Deployment: Automatically deploying code changes to production or
staging environments to streamline and speed up deployment processes.
DevOps Integration: Integrate with DevOps practices by automating both operational
and development tasks, creating a more cohesive workflow between developers and
IT operations teams.

Events

● Single event: on: push
● The workflow can respond to a list (multiple

events): on: [push, pull_request]
● The workflow can respond to event types

with qualifiers, such as branches, tags, or
file paths:

on:
push:
branches:
- main
- 'rel/v*'
tags:
- v1.*
- beta
paths:
- '**.ts'

● The workflow can execute on a specific
schedule or interval ():

● on:using standard cron
syntax
scheduled:
- cron: '30 5,15 * * *'

● The workflow can respond to specific
manual events: on: [workflow-
dispatch, repository-
dispatch]

● The workflow can be called from other
workflows: on: workflow_call

● The workflow can respond to common
activities on GitHub items, such as adding
a comment to a GitHub issue: on:
issue_comment

•Branches and Tags: Workflows can be configured to run only on pushes to specific
branches or tags, enhancing control over where and how the automation applies. For
instance, triggering only on main or release branches.
•The pattern v1.* means that the workflow will be triggered for any tags that start
with v1. followed by any other characters. For example, this could match tags like
v1.1, v1.2, v1.2.3, etc.This is commonly used to ensure that the workflow runs for all
versions within a major version series, allowing for automated processes like
deployments or notifications specific to a version line.
•Paths:Runs the workflow only when files in specific paths are modified. In this
example, any TypeScript files (**.ts).
Cron Syntax:Uses cron format to schedule workflows at specific times, for example,
at 30 minutes past 5 AM and 3 PM every day. Useful for nightly builds or regular
maintenance tasks.

23

Steps

● Three basic steps in this workflow.
● These steps

○ check out a set of code,
○ set up a go environment based on a

particular version, and
○ run the go process on a source file.

● In the YAML syntax, the - character
indicates where a step starts.
○ The uses clause indicates that this step

invokes a predefined action.
○ The with clause is used to specify

arguments/parameters to pass to the
action.

○ And the run clause indicates a command
to be run in the shell.

● Runners are the physical or virtual
computers or containers where the code
for a workflow is executed. They can be
systems provided and hosted by GitHub
or they can be instances you set up,
host, and control. In a workflow file,
runners are defined for jobs simply via
the runs-on clause.

24

Demo

CREATE A
NEW

REPOSITORY

SETUP A
WORKFLOW

(.GITHUB/WO
RKFLOWS)

ADD A .YML
FILE TO THE
WORKFLOW.

ADD
CONTENT

TRIGGER THE
EVENT

CHECK THE
PROGRESS OF

THE
WORKFLOW

AND JOB
USING LOGS

25

Can use Yaml format beautifier

Setting secrets

• Secrets allow you to store sensitive
information in your organization,
repository, or repository
environments.

• Create secrets under Settings →
Security → Secrets → Click New
repository secret → In the Name
field, type a name for your secret →
In the Secret field, enter the value
for your secret → Click Add secret.

• Example: Add an API Key as a Secret

29

Linting is the process of running a program that analyzes code for potential errors,
stylistic issues, and generally enforcing a set of rules that aim to improve the quality
and consistency of the code.

The actions/checkout@v4 is utilized to clone your project into the GitHub Actions
runner, making it possible to execute subsequent operations on your repository files.
The npm install command is used to install three NPM packages that are necessary
for linting the Markdown files. npx remark is executed to lint all Markdown files using
the specified preset and plugin.

The output, which normally goes to standard error due to the --report vfile-reporter-
json option, is redirected into a JSON file named remark-lint-report.json.
After generating the lint report, the actions/upload-artifact@v4 action uploads it to
the workflow's artifacts. This file can be downloaded from the GitHub Actions run,
allowing for easy access and review of the lint results.

Summary
•GitHub Actions

•Automates software development workflows directly within GitHub. Triggered by events like push, pull
requests, and scheduled times.
•Can be configured to run on various types of events with precise conditions (e.g., branches, tags).

•Components of a GitHub Actions Workflow
•Workflows: Define automated processes from start to finish.
•Jobs: Collections of steps within a workflow.
•Steps: Individual tasks within a job, executed sequentially.
•Actions: Reusable units of code that perform specific functions in a step.

•Secrets in GitHub Actions
•Used to store sensitive information securely. Configurable at repository or organization levels.
•Critical for maintaining security, especially with API keys and access tokens.

•Practical Implementation: Benefits of GitHub Actions
•Efficiency: Automates repetitive and complex tasks, reducing manual effort and increasing productivity.
•Reliability: Ensures consistent execution of deployment and testing workflows, minimizing human errors.
•Scalability: Easily integrates with existing tools and services, supporting both small projects and large-scale
operations.
•Customization: Highly customizable to meet specific project needs, from simple notifications to full CI/CD
pipelines.

36

Git/GitHub
Quiz

37

	Slide 1: Announcements
	Slide 2: Lecture 03: Tools of the Trade #1
	Slide 3: Git Refresher
	Slide 4: What are Version Control Systems?
	Slide 5: Importance
	Slide 6: Don’ts in VCS
	Slide 7: GIT Workflow Recap
	Slide 8: GIT Plugins
	Slide 9: GitHub
	Slide 10: Git Basics Demo notes on website
	Slide 11: GIT Demo – Creating Branches
	Slide 12
	Slide 13: Why Code Reviews?
	Slide 14: Pull Requests
	Slide 15: Branch Protection
	Slide 16: Code Review Assignment: Creating Branches, Pull Requests, Performing Reviews
	Slide 17: GitHub Actions
	Slide 18: GitHub Actions
	Slide 19: Anatomy of a GitHub Action
	Slide 20: Anatomy of a GitHub Action
	Slide 21: Anatomy of a GitHub Action
	Slide 22: Anatomy of a GitHub Action
	Slide 23: Events
	Slide 24: Steps
	Slide 25: Demo
	Slide 26: YAML file content
	Slide 27: YAML file : another example
	Slide 28: YAML file: another example
	Slide 29: Setting secrets
	Slide 30: The Result!
	Slide 31: GitHub Action for Continuous Integration (CI)
	Slide 32: Failing GitHub Action with logs
	Slide 33: Generating and uploading test reports
	Slide 34: GitHub Action for Continuous Integration (CI)
	Slide 35: Passing GitHub Action
	Slide 36: Summary
	Slide 37: Git/GitHub Quiz

