
Announcements

•Accept the invitation from openAI by tonight so that I can 
assign you to groups and group credits.

• Extra Credit Opportunity in today’s class

•Project 1 Planning assignment due next Thursday.

1



Lecture 03: SDLC; Life Cycle Models
Dr. Nimisha Roy 

CS3300 A Introduction to Software Engineering

nroy9@gatech.edu



Traditional Software Development Phases

Requirements 

Engineering Design Implementation

Verification & 

Validation

Maintenance

3



Software Development Phases: Semester Assignments

Requirements 
Engineering

Project 1 Planning; Project 1 RE Design
Project 1 Design

Implementation
Project 1 & 2 code, report, ppt

Verification & Validation

Project 2 Test
Maintenance

4



Software Development Life Cycle

5



Requirements Engineering

6

Cost of Late Correction

C
o

st
 o

f 
Er

ro
r 

C
o

rr
ec

ti
o

n

1 5
10

50

100

RE is the process of establishing the needs of stakeholders that are to be solved by software

Management

Elicitation

Validation Specification

Analysis



RE Example: Task Management Software
Elicitation: 

Conduct 
interviews 

with potential 
users (project 

managers, 
team 

members) to 
gather what 

features they 
need in a task 
management 

tool. For 
example, task 
assignment, 
deadlines, 

notifications, 
and progress 

tracking might 
be common 

requirements.

Analysis: 
Analyze the 
feedback to 
determine 
essential 
features 

versus nice-to-
have features. 

This might 
involve 

grouping 
similar 

requirements 
and identifying 

conflicts or 
unrealistic 

expectations.

Specification: 
Create a 

detailed SRS 
document that 
clearly lists all 
functional and 
non-functional 
requirements, 
such as user 

roles, security 
levels, and 

user interface 
preferences.

Validation: 
Review the 

SRS with 
stakeholders 
to ensure the 
requirements 
are complete, 

consistent, 
realistic, and 

verifiable. 
Make 

Modifications 
based on 

feedback to 
better align 
with user 

expectations 
and technical 

feasibility.

Management: 
Establish a 
process to 

accommodate 
changes in 

requirements 
throughout 
the project 

lifecycle, 
ensuring 

traceability 
and controlled 
integration of 

changes.



Design

8

SRS

SRS (Software 
Requirements 

Specification) is a 
reference for 

software 
designers to come 
up with the best 

design for the 
software. 

Multiple designs 
for the product 
architecture are 
present in the 

Design Document 
Specification 

(DDS).

This DDS is 
assessed by 

market analysts 
and stakeholders. 
After evaluating 
all the possible 

factors, the most 
practical and 

logical design is 
chosen for 

development.

https://www.geeksforgeeks.org/software-requirement-specification-srs-format


Design

The architectural 
design characterizes the 
software as a system 
with numerous 
interconnected 
components. The 
designers acquire an 
overview of the 
proposed solution 
domain at this level.

The high-level design 
deconstructs the 
architectural 
design's 'single entity-
multiple 
component' notion into a 
less abstract perspective of 
subsystems and modules, 
depicting their interaction 
with one another

Each module is extensively 
investigated at this level of 
software design to establish 
the data structures and 
algorithms to be used. The 
outcome of all stages is 
documented in DDS. It defines 
the logical structure of each 
module as well as its 
interfaces with other modules.



RE and Design Example: Task Management Software

Architectural Design: 
Define the overall 
structure of the 

system. For this task 
management 

software, you might 
decide on a web-

based architecture 
with client-server 
model where the 

server handles logic 
and database 

interactions, and the 
client provides 
interactive user 

interfaces.

High-Level Design: 
Break down the 
architecture into 

major components 
or modules such as 
User Management, 
Task Management, 

Notification System, 
and Database. 

Define the 
relationships and 

data flow between 
these modules.

Detailed Design: Focus 
on the specifics of each 
module. For instance, 
the Task Management 
module might involve 
detailed designs of the 
database schema for 

tasks, classes, and 
methods to handle task 
creation, updates, and 
queries. Interfaces for 

each module should also 
be defined to ensure 

they can interact 
seamlessly.



Implementation

11

Phase where we take care of realizing the design of the system and create a natural softer 
system

Four Principles

Reduction of 
Complexity

Anticipation of 
Diversity

Structuring for 
Validation

Use of Standards 
(External/Internal)

High Cohesion
Low Coupling

Anticipate for changes
Modular

Easily Testable
TDD, Mockito 

Naming Standard
Client Regulations



Verification & Validation

12

Verification: did we build the system right?
Validation: did we build the right system?

Phase that aims to check that software system meets its specifications and fulfils 
its intended purpose

Unit Integration System



Maintenance

13

Once Software released to final users and in operation, many things can happen:
environment change -new libraries, new systems, additional functionality 
requests, bug reports

Application

Bug 
report

Feature 
request

Environment 
Change

Adaptive 
Maintenance

Software 
Developer

• Maintenance is a fundamental and 
expensive phase

• Regression testing – retesting a 
modified version of software 
before release, no introduction of 
new errors

Perfective 
Maintenance

Corrective 
Maintenance



Software Process Model/ Life Cycle Model

14

Functions: 

• Order of activities
• Transition Criteria between Activities
• What should we do next and for how long? 



Waterfall Method

15

• Project progresses in an orderly sequence of steps
• Pure Waterfall model performs well for software products with a stable product definition- well known 

domain, technologies involved, Request for Proposals (RFP)
• Waterfall method finds errors in early local stages
• Not flexible- not for projects where requirements change, developers not domain experts, or 

technology used are new and evolving

Early Error Detection

No Flexibility



Evolutionary Prototyping

16

• Prototypes that evolve into the final system through an iterative incorporation of user 
feedback.

• Ideal when not all requirements are well-understood. System keeps evolving based on 
customer feedback

Immediate feedback
Helps Requirements understanding

Difficult to Plan
Can deteriorate to code-and-fix



Spiral Method

17

Incremental risk-oriented lifecycle model with 4 main phases

Risk Reduction
Functionality can be added
Software produced early, Early 
feedback

Specific Expertise
Highly dependent on risk analysis
Complex, Costly

https://melsatar.blog/2012/03/15/software-development-life-cycle-models-and-methodologies/ 

https://melsatar.blog/2012/03/15/software-development-life-cycle-models-and-methodologies/


Rational Unified Process (RUP) 

18

• Popular Process based on UML. Works iteratively, performs 4 phases in each iteration
• Inception phase: Scope the system - Scope of project, domain, initial cost, budget estimates
• Elaboration phase: domain analysis and basic architecture
• Construction phase: Bulk of development
• Transition: From development to production, available to users

Inception Elaboration Construction Transition

Business 
Modelling

Requirements

Analysis and Design

Implementation

Test

Deployment

Time



Agile - Scrum

19Highly iterative and incremental development process



Agile - XP

20

Highly iterative and incremental development process

Test Driven Development (TDD)

Refactor: 
Improve 

code 
quality

Write a 
test that 

fails

Write only 
enough for 
the test to 

pass  



Other Agile Methodologies

Kanban: Simplest in IT World; 
May Pose time related problems



Some industry-based examples

Waterfall

Military And Aircraft Programs Where 
Requirements Are Declared Early On 
And Remain Constant

22

Evolutionary Prototyping

• Company: Broderbund Software.

• Project: The creation of the original 
"Prince of Persia" video game. The 
initial version of the game was 
created and then improved upon 
based on feedback and playtesting.



Some industry-based examples

Spiral

• NASA’s space 
shuttle program in 
the 1970s

• Gantt Chart 
Software –
GanttPRO

23

Agile

• Apple, IBM, Microsoft, and Procter & Gamble

• Cisco: defects were reduced by 40% when 
compared to waterfall

• Barclays: 300% increase in throughput

• Panera Bread: 25% increase in company sales

• PlayStation Network: Saved the company $30 
million a year

https://ntrs.nasa.gov/api/citations/20050209905/downloads/20050209905.pdf
https://ntrs.nasa.gov/api/citations/20050209905/downloads/20050209905.pdf
https://ganttpro.com/
https://ganttpro.com/
https://www.zippia.com/advice/agile-statistics/#:~:text=The%20most%20well%2Dknown%20companies,40%25%20when%20compared%20to%20waterfall


Choosing the right Software Process Model

24

As much influence over a project’s success as any other major planning decision

Requirements 
Understanding

Expected 
Lifetime Risk

Schedule Constraints
Interaction with 

Management/Customers
Expertise



https://asana.com/resources/project-management-methodologies 
https://thedigitalprojectmanager.com/projects/pm-methodology/project-management-methodologies-made-simple/ 

Degree of 
Project 

Complexity

Work/Time 
Flexibility

Project Focus/ 
Client 

involvement

Size of 
organization

Role 
Specialization

Budget

Industry Standards: Factors affecting choice of project LCM

https://asana.com/resources/project-management-methodologies
https://thedigitalprojectmanager.com/projects/pm-methodology/project-management-methodologies-made-simple/


Industry Standards: Factors affecting choice of project LCM

Factors Waterfall Evolutionary 
Prototyping

Agile 
Methodologies

Spiral

Unclear User Requirements Poor Good Excellent Excellent

Unfamiliar Technology Poor Excellent Poor Excellent

Complex System Good Excellent Poor Excellent

Reliable System Good Poor Good Excellent

Short time schedule Poor Good Excellent Excellent

Strong Project Management Excellent Excellent Excellent Excellent

Cost Limitation Poor Poor Excellent Poor

Visibility of stakeholder Good Excellent Excellent Excellent

Skills Limitation Good Poor Poor Poor

Documentation Excellent Good Poor Good

Component Reusability Excellent Poor Poor Poor
https://melsatar.blog/2012/03/15/software-development-life-cycle-models-and-methodologies/ 

https://melsatar.blog/2012/03/15/software-development-life-cycle-models-and-methodologies/


Industry Standards: Most Popular Methods

https://thedigitalprojectmanager.com/projects/pm-methodology/project-management-methodologies-made-simple/ 

https://thedigitalprojectmanager.com/projects/pm-methodology/project-management-methodologies-made-simple/


Lifecycle Documents

28

Documenting the activities carried out during the different phases of the lifecycle is a very 
important task.

Can be used for different purposes like:

• Communicate details of the software systems to different stakeholders
• Ensure the correct implementation of the system
• Facilitate maintenance and so on.

IEEE Documents Light-weight Documents



Classic Mistakes : People

29

Heroics Work Environment People Management



Classic Mistakes : Process

30

Schedule Issues Planning Issues Failure



Classic Mistakes : Product

31

Gold Plating of
Requirements

Feature Creep Research ≠ Development



Classic Mistakes : Technology

32

Silver-Bullet Syndrome Switching Tools No version control



Quizizz

33


	Slide 1: Announcements
	Slide 2: Lecture 03: SDLC; Life Cycle Models
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: RE Example: Task Management Software
	Slide 8: Design
	Slide 9: Design
	Slide 10: RE and Design Example: Task Management Software
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Other Agile Methodologies
	Slide 22: Some industry-based examples
	Slide 23: Some industry-based examples
	Slide 24
	Slide 25: Industry Standards: Factors affecting choice of project LCM 
	Slide 26: Industry Standards: Factors affecting choice of project LCM 
	Slide 27: Industry Standards: Most Popular Methods
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

