
Announcements

•Project 1 Planning Due today

•Quiz 2 on 9/11
• Honorlock based quiz. Closed book and notes.
• Practice Honorlock Quiz Released to check your settings

•REST assignment out today
• This is an individual assignment

•Project 1 Progress Report Due on 9/12

Lecture 06: Tools of the Trade #3

Dr. Nimisha Roy

CS3300 Introduction to Software Engineering

nroy9@gatech.edu

JQuery, API, AJAX, RESTful API

Slides adapted from Marty Stepp, Jessica Miller, Victoria Kirst and David Karger

Contents

• jQuery

• DOM, jQuery Objects, wrapper (demo)

• API

• API calls

• Web Protocol, HTTP

• API key (demo)

• AJAX

• Types of AJAX calls using JQuery (demo)

• REST (demo)

jQuery

• jQuery is a fast and concise JavaScript Library that simplifies
HTML document traversing, event handling, animating, and
Ajax interactions for rapid web development

• Why jQuery?
• Write less, do more
 - $("p.neat").addClass("ohmy").show("slow");
• Performance
• Plugins
• Standard practice

DOM
• Document Object

Model (DOM) represents
the structure of an HTML
document in a web
browser, allowing for
manipulation and
interaction via JavaScript.

• Represents the
document as nodes and
objects

• Can be used to modify
the document with a
scripting language like
JavaScript

The DOM tree

Plain JavaScript DOM manipulation vs. jQuery

Aspect DOM method jQuery equivalent

Availability Native in all modern web browsers Requires inclusion of library

Verbosity More verbose More concise

Cross Browser Support May have browser specific quirks Unified API across browsers

Functionality Fundamental methods for page
content

Additional utilities, animations,
plugins

Performance Direct manipulation can be faster Some overload

Selection and Chaining Requires more code for complex
tasks

Powerful

Community and Plugins No specific community, user
standard JS

Rich ecosystem of plugins and
vast community

Plain JavaScript DOM manipulation vs. jQuery

Description DOM method jQuery equivalent

returns array of descendants with the given
ID, such as “header"

getElementById("id") $("#id")

returns array of descendants with the given
tag, such as "div"

getElementsByTagName("tag") $("tag")

returns array of descendants with the
given name attribute

getElementsByName("somenam
e")

$("[name='somena
me']")

returns the first element that would be
matched by the given CSS selector string

querySelector("selector") $("selector")

returns an array of all elements that would
be matched by the given CSS selector string

querySelectorAll("selector") $("selector")

jQuery object

• The $ function always (even for ID selectors) returns an array-like object called
a jQuery object.

• jQuery objects are wrapper objects around single or multiple DOM elements.

• You can access the actual DOM object by accessing the elements of the
jQuery object

// false
document.getElementById("id") == $("#id");
document.querySelectorAll("p") == $("p");
// true
document.getElementById("id") == $("#id")[0];
document.getElementById("id") == $("#id").get(0);
document.querySelectorAll("p")[0] == $("p")[0];

Using $ as a wrapper

• $ adds extra functionality to DOM elements

• passing an existing DOM object to $ will give it the jQuery upgrade

// convert regular DOM objects to a jQuery object
var elem = document.getElementById("myelem");
elem = $(elem);
var elems = document.querySelectorAll(".special");
elems = $(elems);

$(document).ready()

Before you can safely use jQuery to do anything to your page, you need to

ensure that the page is in a state where it's ready to be manipulated.

Using DOM: window.onload = function() { // do stuff with the DOM }

Using jQuery: $(document).ready(function() { // do stuff with the DOM })

Using jQuery shorthand: $(function() { // do stuff with the DOM })

Demo Time !

Use of hide/click/hover functions using jQuery

API
Definition
Application Programming Interface is a computing interface to a software
component or a system, that defines how other components or systems can use it.

API vs. Application
Application/Library/Service: A blob of code that does things
API: The way your code can ask the application/library/service to do things. The
boundary of the application/library through which requests go in and responses
come out

The Browser..
…has a UI that lets you interact with the document
…has the DOM API that lets your code interact with the document

How is an API used?
You want to book a flight
Endpoints: Flight booking platform and airlines website
Most common formats of representing data are JSON and XML

Protocol of the Web
• A protocol is a system of rules that define how data is exchanged
• Main protocol on web is HTTP- Hyper-Text Transfer Protocol
• Follows Client-server Protocol.

• http://example.com, the "http" tells the browser to use the rules of HTTP when talking with
the server. With the ubiquity of HTTP on the web, many companies choose to adopt it as the
protocol underlying their APIs.

• Communication in HTTP centers around a concept called the Request-Response Cycle.

Request-Response Parameters

Request Response

• URL: Uniform Resource Locator – Unique
address

• Method: Type of Action –
• GET: Retrieve a resource
• POST: Create a resource
• PUT: Edit/update existing resource
• DELETE: delete a resource

• Header: Meta-information about a request.
• Referer: page making the request
• Accept: acceptable response data types

(text, pdf, etc.)
• Cookie: contains specific user data

• Body: data to PUT/POST/GET

• Status Code: 200 OK, 301 redirect, 401
Unauthorized, 500 server error…

• Header: Meta-information about
response.
• Content-Type: of returned object

(text, pdf, etc.)
• Set-Cookie: user data to store in

browser
• Location: Instruction to look

elsewhere
• Body: content such as web page

Authentication: Basic
How It Works:
•Basic Authentication requires a username and password to authenticate the client with the server.
•The client sends these credentials in the Authorization header of the HTTP request.
•Example: Authorization: Basic base64encoded(username:password) The credentials are encoded in Base64 format,
which is a simple form of encoding but not secure because it can be easily decoded.

Security Considerations:
•The server checks the credentials sent in the header against its stored credentials.
•If the credentials do not match, the server responds with a 401 Unauthorized status code, indicating that the request
requires valid authentication.
•If the connection is not secured using Transport Layer Security (TLS) (HTTPS), the credentials can be intercepted and
stolen, leading to a potential security breach.
•Without Multi-Factor Authentication (MFA), once someone has obtained your credentials, they can access all resources
associated with your account.

Drawbacks:
•Basic Authentication is simple but less secure:

•Passwords are sent with every request, which makes them more vulnerable to interception.
•If not using HTTPS, passwords can be exposed to attackers.
•It does not provide any additional layers of security, such as MFA.

Authentication: OAuth

How It Works:
•OAuth (Open Authorization) is a more secure and widely-used authentication scheme on the web.
•Instead of sharing the user's password, OAuth uses tokens to authenticate the user.
•The process involves the client and server communicating back and forth to obtain an access token that proves
the user's identity. More details here.

Benefits:
•No Password Sharing: OAuth does not share the user's password directly between the client and the server. This
significantly reduces the risk of passwords being compromised.
•Authorization Tokens: Instead of passwords, OAuth uses authorization tokens that are typically short-lived or
have an expiration date, adding an extra layer of security.
•Scopes and Permissions: OAuth allows the client to request specific permissions or scopes of access, limiting the
amount of data the client can access. For example, an app might request access only to a user's profile
information, not their email or other sensitive data.

Use Case Example:
•When using a third-party application to log in with Google, Facebook, or Twitter, you will likely use OAuth.
•The application redirects you to the service provider (like Google), you authenticate there, and the provider
gives the application an access token to use on your behalf.

https://zapier.com/learn/apis/chapter-5-authentication-part-2/

API KEY
API Key Authentication:
• Requires API to be accessed with a unique key
• Server now has the option to limit administrative functions, like changing passwords or

deleting accounts.

DEMO TIME!
Use API-key to access weather data

AJAX

The Popular Approach The Insight

• 90s web applications ran on the
server

• To take an action, user submitted a
form

• To await changes, keep reloading
the page

• Browser was just to display results
and accept user input

• Many actions change little of the UI
• Client can do significant

computation
• Why bother involving the server?

• Demands more server
horsepower

• Network makes slow UI
• Reload loses your place in the

page—disruptive

AJAX
Asynchronous
 promises etc.
JavaScript
 Computation on client
And XML
 Data serialization format
 Now replaced by JSON
 But AJAJ doesn’t sound as cool

Allows web pages to be updated
asynchronously by exchanging data with a
web server behind the scenes. This means
that it is possible to update parts of a web
page, without reloading the whole page.
MUCH FASTER!!

All major browsers now support
XMLHttpRequest (XHR) object

jQuery AJAX
• jQuery offers many Ajax-related simple & convenient methods to create GET & POST requests
• Considered a good practice to use $.ajax() method over other methods

Options:

• url- the request url. Only mandatory option.
• type of request, “POST” or “GET”. Default is “GET”
• dtype-atatype- “text”, “html”, “json”
• async- Accepts true/false. False makes request synchronous and will block execution of other codes until

response is received
• cache- Use to cache response if available
• complete- triggers a callback function to run when request is complete, regardless of success or failure
• data- data (string or object type) to be sent to the server
• error- callback function to run when request gets an error
• success- callback function to be run if request is success
• timeout- specifies time in milliseconds to wait , otherwise consider request to be a failure

DEMO TIME !!
Access data in JSON format from web via AJAX API call

• REpresentational State Transfer
• Architectural style of web services development. Often called “Language of the

Internet”
• Literally means transferring the state of representation of a resource.

• It is a set of constraints that, when applied as a whole, emphasizes performance,
scalability, simplicity, modifiability, visibility, portability, and reliability.

• Follows HTTP protocol. GET, POST, DELETE,

RESTful APIs

Client Server

Request: products/1

Response:
{ Id: 1,
Name: milk,
Cost: $ 4 }

RESTful APIs - Need and Principles

• Need:
• Allows loosely coupled client-server applications. E.g.: server can be

angular/reach, server: node js/php/.net
• Independent of platform and languages
• Scalability – Server does not store any client data
• Can return data in any format as requested

• Principles:
• Stateless: Every method call must include all the state the server needs to provide

the method. Increases scalability
• Client-Server: Separate; increases portability of interface
• Cacheable: label the response as cacheable; can be reused by client
• Layered System: load balancing, shared caches, enhance scalability and stability

Based on Create, Read, Update and delete resources built on HTTP methods

 POST GET PUT DELETE

RESTful APIs- Methods

Create a basic web app using REST API, VS Code IDE, Node.JS, Express

Tools used:

HTML/CSS/JS: Front-end Programming (Client Side)

VS Code: Programming IDE (Client Side)

Node.js: Runtime environment for applications in JavaScript (To

implement/create web server in JavaScript language)

Express: Backend web application framework for Node. Js (Web Server side)

DEMO TIME!!

	Slide 1: Announcements
	Slide 2: Lecture 06: Tools of the Trade #3
	Slide 3: Contents
	Slide 4: jQuery
	Slide 5: DOM
	Slide 6: The DOM tree
	Slide 7: Plain JavaScript DOM manipulation vs. jQuery
	Slide 8: Plain JavaScript DOM manipulation vs. jQuery
	Slide 9: jQuery object
	Slide 10: Using $ as a wrapper
	Slide 11: $(document).ready()
	Slide 12: Demo Time !
	Slide 13: API
	Slide 14: How is an API used?
	Slide 15: Protocol of the Web
	Slide 16: Request-Response Parameters
	Slide 17: Authentication: Basic
	Slide 18: Authentication: OAuth
	Slide 19: API KEY
	Slide 20: AJAX
	Slide 21: AJAX
	Slide 22: jQuery AJAX
	Slide 23: RESTful APIs
	Slide 24: RESTful APIs - Need and Principles
	Slide 25: RESTful APIs- Methods
	Slide 26: DEMO TIME!!

