
Announcements

• Project 1 Progress Report due tonight

• REST assignment due next Thursday

• Quiz 2 Statistics
• Mean: 13.49/15; Std Dev: 1.5

1



Lecture 08: Tools of the Trade #4

Dr. Nimisha Roy 

CS3300 Introduction to Software Engineering

nroy9@gatech.edu

Spring, Spring Boot

2



Contents

• Java Frameworks

• Spring
•Advantages, IoC, Dependency Injection

• Spring Boot
• Starter Projects, Auto Configurations

•Demo

3



Frameworks

• Framework is a predefined set of tools, libraries, best practices, and conventions that 
helps developers create applications more efficiently and effectively.

• Provides a foundation on which developers can build programs for a specific platform. 

Provides a 
consistent 

structure for 
collaboration

Reusable Code

Includes Best 
practices for 
foundational 

elements

Extensions and 
Plugins

Inversion of 
Control

Learning Curve

1.Structure & Conventions: Frameworks provide a consistent structure. This 
structure can make it easier for developers to collaborate on projects because 
everyone is familiar with the established project organization.
2.Reusable Code: They often come with a lot of built-in functionalities that can be 
reused, reducing the need to build everything from scratch. This significantly speeds 
up the development process.
3.Best Practices: Frameworks embody best practices for specific tasks (like data 
handling, error management or user authentication). This means developers can 
focus on the application's unique functionality rather than the intricacies of 
foundational elements.
4.Extensions & Plugins: Many frameworks can be extended with plugins or modules, 
allowing developers to add specific features without altering the core system.
5.Abstraction: Frameworks typically offer higher-level abstractions for common tasks 
(like database operations, routing, or UI components). This abstraction layer shields 
developers from some of the complexities of these operations.
6."Inversion of Control": In a traditional library, the custom code that calls the library 
is in control. But in a framework, the control is inverted: the framework calls the 
custom code. This is sometimes referred to as the "Hollywood Principle" - "Don't call 
us; we'll call you."

4



7. Learning Curve: While frameworks can accelerate development, there's often a 
learning curve involved. Developers need to invest time in understanding how the 
framework operates, its conventions, and its quirks.

4



Java Frameworks

• Java framework is a body of reusable prewritten code acting as templates 
used by developers to create apps using the Java programming language

Web frameworks

• SpringBoot, Vaadin, 
JavaServer Faces, 
JHipster

Data Access 
frameworks

• Hibernate, Java 
Persistence API, MyBatis

Microservices

• Spring Cloud, 
MicroProfile, Quarkus

Big Data

• Apache Kafka, Apache 
Spark, Apache Hadoop

Testing

• Junit, TestNG, Mockito, 
Spring Test

Security

• Spring Security

1.Web Frameworks:
1. Spring Boot: An extension of the Spring framework that simplifies the 

process of building production-ready applications. It provides conventions 
for setting up a project, so you can get up and running as quickly as 
possible.

2. JavaServer Faces (JSF): A Java web application framework that simplifies 
the development of user interfaces for Java web applications.

3. Vaadin: Focuses on providing a rich user interface for web apps without 
requiring developers to write HTML, CSS, or JavaScript.

4. JHipster: A generator to create a Spring Boot + Angular/React web 
application.

2.Data Access Frameworks:
1. Hibernate: An Object-Relational Mapping (ORM) framework that lets you 

develop persistent classes using object-oriented concepts, without having 
to deal with the database specifics.

2. JPA (Java Persistence API): A specification for object-relational mapping 
in Java. Hibernate is one of its implementations.

3. MyBatis: A SQL mapping framework that integrates with Spring and other 
platforms.

5



3. Microservices:
1. Spring Cloud: Provides tools for developers to quickly build some of the 

common patterns in distributed systems (e.g., configuration 
management, service discovery).

2. MicroProfile: A set of APIs for creating microservices in Java.
3. Quarkus: A Kubernetes-native Java framework tailored for GraalVM and 

HotSpot, crafted for serverless, microservices, and fast boot times.
4.Reactive Programming:

1. Spring WebFlux: A reactive framework that is part of the Spring 5+ 
ecosystem.

2. Vert.x: A tool-kit for building reactive applications on the JVM.
3. Reactor: A reactive programming library for building non-blocking 

applications on the JVM.
5.RESTful Services:

1. Jersey: The JAX-RS reference implementation for building RESTful web 
services in Java.

2. Spring REST: Spring's way of building RESTful web services.
6.Big Data & Data Processing:

1. Apache Kafka: A distributed streaming platform.
2. Apache Spark: A fast, in-memory data processing engine with elegant 

and expressive development APIs.
3. Apache Hadoop: A framework for distributed processing of large data 

sets across clusters.
7.Testing:

1. JUnit: The most popular framework for unit testing Java applications.
2. TestNG: Another testing framework inspired by JUnit but introducing 

some new functionalities.
3. Mockito: A popular mocking framework for unit tests in Java.
4. Spring Test: Provides support for testing Spring components with JUnit.

8.Security:
1. Spring Security: A comprehensive security solution for Java applications, 

focusing on authentication and authorization.
9.WebSockets:

1. Atmosphere: A framework that supports WebSocket-based 
communication.

2. Spring WebSocket: Spring's module for handling WebSocket 
communication.

10.Task Scheduling & Background Processing:
•Quartz Scheduler: A richly featured, open-source job scheduling library.
•Spring Batch: A framework for batch processing.
11.Mobile Development:
•Codename One: Allows Java developers to write native mobile applications for all 

5



devices.
12. GUI Development:
•JavaFX: Java's official GUI toolkit for developing desktop applications.
•Swing: The predecessor to JavaFX, but still used in many legacy applications.
13.Cloud & Deployment:
•Docker: While not exclusive to Java, Docker is used heavily in the Java world for 
containerizing applications.
•Kubernetes: Again, not exclusive to Java, but with the rise of microservices, 
Kubernetes is becoming a staple for orchestrating containers.

5



Framework vs. API

• Framework serves as a foundation for programming, while an API provides 
access to the elements supported by the framework. 

• Framework includes an API

• Will also include code libraries, compiler and other programs needed for 
software development

6



Spring

• Most popular, powerful, lightweight and open-source application 
development framework used for Java Enterprise Edition (JEE). Other 
frameworks include Hibernate, JSF, Struts etc.

• JEE is built upon Java SE (Standard Edition) . Provides functionalities like 
web application development, servlets etc. 

• JEE provides APIs for running large scale applications

Lightweight- less memory consumption

7



Advantages of Spring

• MVC architecture. Distinct division between models (data), controllers 
(application logic) and views(user interface).

• Framework of frameworks. Can easily integrate with other frameworks 
like Struts, Hibernate etc.

• Flexibility

• One stop-shop for all enterprise applications. But modular, allows you to 
pick which modules you need.

• Allows loose coupling among modules

• Easier to test

• Increases efficiency due to reduction in application development time

Hibernate: An Object-Relational Mapping (ORM) framework that allows developers 
to work with databases using Java objects, avoiding direct SQL usage.

8



Inversion of Control (IoC)

• Principle in software engineering which transfers the control of objects 
or portions of a program to a container or framework. Most often used 
in the context of object-oriented programming. The architecture helps 
in decoupling the execution of a task from its implementation.

• In Spring, objects configured in XML file and Spring container is 
responsible for creation and deletion of objects by parsing XML file.

XML files not part of source code. So u can change the configuration values anytime 
and that will get incorporated automatically.

In a traditional library, the custom code that calls the library is in control. But in a 
framework, the control is inverted: the framework calls the custom code. This is 
sometimes referred to as the "Hollywood Principle" - "Don't call us; we'll call you."

9



Inversion of Control (IoC)
Example of highly coupled classes

• CustomerBusinessLogic and DataAccess classes are tightly coupled. Changes in the DataAccess class will lead to changes in the 
CustomerBusinessLogic class. For example, if we add, remove or rename any method in the DataAccess class then we need to change the 
CustomerBusinessLogic class accordingly.

• The CustomerBusinessLogic class creates an object of the DataAccess class using the new keyword. There may be multiple classes which use 
the DataAccess class and create its objects. So, if you change the name of the class, then you need to find all the places in your source code 
where you created objects of DataAccess and make the changes throughout the code. 

• Because the CustomerBusinessLogic class creates an object of the concrete DataAccess class, it cannot be tested independently (TDD). The 
DataAccess class cannot be replaced with a mock class.

10



Inversion of Control (IoC)
Using Factory pattern of the IoC principle => Loosely coupled design

The CustomerBusinessLogic class uses the 
DataAccessFactory.GetCustomerDataAccessObj() method to get 
an object of the DataAccess class instead of creating it using 
the new keyword. Thus, we have inverted the control of 
creating an object of a dependent class from the 
CustomerBusinessLogic class to the DataAccessFactory class.

first step towards achieving fully loose coupled design.

11



Dependency Inversion Principle (DIP)

• A high-level module 
(depends on other modules) 
should not depend on low-
level modules (DataAccess 
Class). Both should depend 
on abstraction.

• Abstractions should not 
depend on details. Details 
should depend on 
abstractions

Abstraction in OOPS means to 
create an interface or an abstract 
class which is non-concrete. This 
means we cannot create an object 
of an interface or an abstract class.

High-level modules typically contain the core logic of an application – the "business 
rules" or "use-cases". Low-level modules handle more specific, detailed operations, 
such as data access or interaction with certain tools or devices.
If high-level modules depend directly on low-level modules, then changes in the low-
level modules might necessitate changes in the high-level ones. This leads to a tightly 
coupled system, making it harder to change, extend, or reuse components.
By depending on abstractions (like interfaces or abstract classes), we can decouple 
the high-level and low-level modules. Both modules rely on a stable contract (the 
abstraction) that doesn't frequently change, while the implementations behind the 
abstraction can be altered without affecting modules that rely on it.

12



Dependency Inversion Principle (DIP)

13



Dependency Injection (DI)

• Dependency Injection (DI) is a design pattern used to implement IoC. It allows the creation of 
dependent objects outside of a class and provides those objects to a class through different ways.

• Increases possibility to reuse classes and test independently of other classes while unit testing

• DI pattern includes 3 class types:

Injector class creates an object of service class, injects 
it to a client object. Hence, separates the responsibility 
of creating an object of service class out of the client 
class.

Benefits of using DI
• Helps in Unit testing.
• Boiler plate code is reduced, as initializing of 

dependencies is done by the injector component.
• Extending the application becomes easier.
• Helps to enable loose coupling, which is important 

in application programming.

Client Service

Injector

Uses

14



Without DI example

Problems with This Approach:

•Tight Coupling: The Car class is tightly 
coupled with the Engine class. If you want to 
change the engine type (e.g., to a 
DieselEngine), you must modify the Car class 
code.
•Difficult to Test: You cannot easily replace 
the Engine with a mock or stub for testing 
purposes.
•Low Flexibility: Every change in the Engine 
class or its behavior requires changes in the Car 
class.

15



With DI example

16



With DI example

Benefits of This Approach:

•Loose Coupling: The Car class is not tightly coupled to the Engine 
class. Any implementation of Engine (e.g., DieselEngine, ElectricEngine) 
can be injected.
•Testability: Easily test the Car class by injecting mock objects or stubs 
of the Engine.
•Single Responsibility Principle: The CarInjector class handles the 
creation and injection of dependencies, leaving the Car class focused on its 
core functionality.

17



IoC, DIP, DI

To create loosely 
coupled classes

Implements the 
principles

e.g. Spring

18



Spring Boot

• Spring Boot builds on top of Spring Framework, offering a streamlined approach to 
developing Spring applications with minimal boilerplate code, auto configuration, 
embedded servers, and other features. It means that you can just run the application.

• Dependencies and configurations are managed by Spring Boot.

• Normally to run application, you need: hardware + OS + Server +Application file (.war for 
web applications). With Spring Boot: server embedded (Tomcat), executable files generated 
automatically.

• Features:
• Provides with a starter project for the application along with auto configuration
• Does not generate XML file but configuration can be modified (using YAML files, 

properties or XML)

Web application resource is a file used to distribute a collection of JAR-files, 
JavaServer Pages, Java Servlets, Java classes, XML files, tag libraries, static web pages 
(HTML and related files) and other resources that together constitute a web 
application.

19



DEMO TIME!!

• Create a simple web app using SpringBoot
• We needed Express in Node.js to establish the server. Spring Boot has Tomcat server 

embedded– very convenient

WHAT IF WE HAD TO CREATE THE SAME APP WITHOUT SPRING BOOT

• We have Spring framework
• Setup and manage all maven dependencies and versions in pom.xml manually – very 

extensive
• Define Web.xml file to configure web related front controller (if war)
• Define a Spring context XML file to define component scans 
• Install Tomcat or configure Tomcat maven plugin
• Deploy and run application IN TOMCAT

20



Spring Boot Starter Projects

• Goal is to help you get a project up and running quickly

• Web application: Spring-Boot-Starter-Web

• REST API: Spring-Boot-Starter-Web

• Talk to database using JPA- Spring-Boot-Starter-Data-JPA

• Talk to database using JDBC- Spring-Boot-Starter-JDBC

• Secure web application- Spring-Boot-Starter-Security

• Manage list of maven dependencies & versions for different apps:

• Spring-Boot-Starter-Web: Frameworks needed by typical web applications. Spring-
webmvc, spring-web, spring-boot-starter-tomcat, sprint-boot-starter-json

21



Spring Boot Auto Configuration

• Starter defines dependencies

• Auto configurations provides basic configuration to run application using frameworks 
defined in your maven dependencies

• Decided based on:

• Which frameworks are in class path?

• What is the existing configuration? (Maven Dependencies – 
springframework.boot.autoconfigure – classes that will be checked)

• Type logging.level.org.springframework=DEBUG in application.properties to see 
what is being auto-configured.

Positive maches will be auto configured

22


	Slide 1: Announcements
	Slide 2: Lecture 08: Tools of the Trade #4
	Slide 3: Contents
	Slide 4: Frameworks
	Slide 5: Java Frameworks
	Slide 6: Framework vs. API
	Slide 7: Spring
	Slide 8: Advantages of Spring
	Slide 9: Inversion of Control (IoC)
	Slide 10: Inversion of Control (IoC)
	Slide 11: Inversion of Control (IoC)
	Slide 12: Dependency Inversion Principle (DIP)
	Slide 13: Dependency Inversion Principle (DIP)
	Slide 14: Dependency Injection (DI)
	Slide 15: Without DI example
	Slide 16: With DI example
	Slide 17: With DI example
	Slide 18: IoC, DIP, DI
	Slide 19: Spring Boot
	Slide 20: DEMO TIME!!
	Slide 21: Spring Boot Starter Projects
	Slide 22: Spring Boot Auto Configuration

