
CS3300: Introduction to Software Engineering Nimisha Roy

Step-by-Step Guide to Creating and Deploying a New Spring Boot Application
to Google App Engine
Prerequisites:

1. Google Cloud CLI:
o Download and install the Google Cloud CLI for your operating system. Follow the

instructions on the official page: Google Cloud CLI Download.
2. GCP Credit Application:

o Ensure you have applied for Google Cloud Platform (GCP) credits with the
instructions mentioned on Ed Discussion.

3. Billing Information:
o Set up your billing information in your Google Cloud account. Even with credits,

GCP requires billing information to deploy applications. Follow the GCP Setup
Guide on class website – points 1-4.

Process:

Step 1: Create a Google Cloud Project

1. Navigate to the Google Cloud Console:
o Log in with your Google account.

2. Create a New Project:
o Click on the "Select a Project" drop-down and then "New Project."
o Name your project (e.g., "SpringBootDemo") and choose a billing account.
o Click "Create" to set up your new project.

Step 2: Create a New Spring Boot Application

1. Go to Spring Initializr:
o Spring Initializr is a web-based tool for generating new Spring Boot projects.

2. Configure Your Project:
o Project: Select Maven.
o Packaging: Choose JAR.
o Java Version: Select Java 17/21/22 or a compatible version.
o Group: Enter a group ID (e.g., com.example).
o Artifact: Enter an artifact ID (e.g., springbootdemo).
o Dependencies: Add Spring Web (needed for creating REST endpoints).
o Click Generate to create and download your project as a ZIP file.

3. Unzip the Project:
o Unzip the downloaded file to a folder on your computer.
o Open the project in your preferred development environment (e.g., Visual Studio

Code, IntelliJ, or Eclipse).

https://cloud.google.com/sdk/docs/install
https://console.cloud.google.com/
https://start.spring.io/

CS3300: Introduction to Software Engineering Nimisha Roy

Step 3: Create a HelloWorld Controller

1. Navigate to the Main Java Package:
o Go to src/main/java/com/example/springbootdemo (replace

com/example/springbootdemo with your package structure).
2. Create a New Java Class:

o Name the class HelloWorldController.java.
3. Add the Following Code to the Class:

import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;

@RestController
public class HelloWorldController {

 @GetMapping("/hello")
 public String hello() {
 return "Hello, World!";
 }
}

o Explanation:
 @RestController marks the class as a RESTful web service controller.
 @GetMapping("/hello") maps HTTP GET requests to the /hello

endpoint.
 When accessed, this endpoint will return the text "Hello, World!".

Step 4: Update the pom.xml File

1. Open the pom.xml File:
o Locate and open the pom.xml file in the root directory of your project.

2. Add the Google Cloud Tools Plugin:
o Add the following plugin configuration inside the <build> section:

<build>
 <plugins>
 <plugin>
 <groupId>com.google.cloud.tools</groupId>
 <artifactId>appengine-maven-plugin</artifactId>
 <version>2.3.0</version>
 </plugin>
 </plugins>
</build>

o Explanation:
 This plugin allows you to deploy the application to Google App Engine

directly from Maven.
3. Save the pom.xml File:

o Save your changes and close the file.

CS3300: Introduction to Software Engineering Nimisha Roy

Step 5: Create the app.yaml File

1. Go to the Root Directory of Your Project:
o Make sure you are in the root directory of your Spring Boot project (where your

pom.xml file is located).
2. Create a New File Named app.yaml:

o In your code editor, create a new file named app.yaml.
3. Add the Following Content to the app.yaml File:

runtime: java17
env: standard
service: default

o Explanation:
 runtime: java: Specifies the Java runtime.
 env: standard: Uses the standard App Engine environment.
 service: default: Defines the default service name to handle all traffic.

4. Save the app.yaml File:
o Ensure the app.yaml file is saved in the root directory of your project.

Step 6: Build Your Spring Boot Application

1. Open a Terminal in the Root Directory of Your Project:
o You can use the integrated terminal in your development environment or a system

terminal.
2. Run the Maven Build Command:

o For Linux or macOS:

./mvnw clean install -DskipTests

o For Windows:

.\mvnw.cmd clean install -DskipTests

o This command compiles your project and packages it into a JAR file located in the
target directory.

CS3300: Introduction to Software Engineering Nimisha Roy

Step 7: Deploy to Google App Engine

1. Initialize Google Cloud CLI:
o Open your terminal and check if the Google Cloud CLI is installed:

gcloud -v

o Initialize the CLI with:

gcloud init

o Follow the prompts to:
 Choose the default configuration.
 Log in with your Google account (ensure it has billing set up).
 Select the project you created in Step 1.

2. Deploy Your Application:
o Deploy your application to App Engine using the following command at the root

level:

gcloud app deploy

o This command uses the app.yaml file to determine the configuration for the
deployment.

3. Follow the Prompts:
o Choose a deployment region (e.g., us-east1).
o Wait for the deployment to complete. A URL will be displayed where your

application is hosted.

Step 8: Verify Deployment

1. Open Your Application:

CS3300: Introduction to Software Engineering Nimisha Roy

o Run the following command to open your deployed application in the browser:

gcloud app browse

o This command will take you to the URL of your deployed application.

Step 9: Clean Up to Avoid Billing Charges

1. Shut Down the GCP Project If Not Needed:
o If you do not need the deployed application anymore or want to avoid billing charges

(which you should)
o Go to the Google Cloud Console.
o Navigate to Project Settings and select Shut Down Project.

https://console.cloud.google.com/

	Step-by-Step Guide to Creating and Deploying a New Spring Boot Application to Google App Engine
	Prerequisites:
	Process:

	Step 1: Create a Google Cloud Project
	Step 2: Create a New Spring Boot Application
	Step 3: Create a HelloWorld Controller
	Step 4: Update the pom.xml File
	Step 5: Create the app.yaml File
	Step 6: Build Your Spring Boot Application
	Step 7: Deploy to Google App Engine
	Step 8: Verify Deployment
	Step 9: Clean Up to Avoid Billing Charges

