
This document comprises the GIT demonstration steps covered in workshop.

PART 1: INITIALIZING A GIT REPOSITORY, STAGING AND COMMITTING CHANGES
TO THE LOCAL REPOSITORY

1. Open command prompt
2. Navigate to the folder where you want your workspace directory
3. Git help: to get help with any command.
4. Configure your name and email ID to be associated with your GIT account:

a. Git config –global user.name "<your name>"
b. Git config –global user.email "<your email>"

If this doesn’t work use PAT as mentioned on Ed

5. Create a new folder
a. mkdir mygitproject

6. Move into the created folder:
a. cd mygitproject

7. Git status – error since git is not initialized in your workspace yet
8. Git init: Initialize a local repository [PAUSE]
9. Create a new file readme.txt with some content
10. Git status: There is an untracked file. A new file created in your working

directory is always untracked. This would have been in the modified state if
the file was not new. The file is not staged yet.

11. Git add readme: to stage the new file
12. Git status: new file is now staged and ready to be committed
13. Git commit -m "added readme file": file is committed and in your local

repository
14. Git status: nothing to commit.
15. Make some changes to the readme file
16. Git status: file is now in the modified state
17. git diff HEAD readme : to get the difference between the modified file in

the workspace and the commited file in the local repository
18. We can use Git add and git commit OR git commit -a to commit the

changes to the local repository
a. Git commit -a -m "Added content to readme file"

19. Git log: all different commits, version history, and commit messages are
displayed. [PAUSE]

PART 2: CREATING A NEW REMOTE REPOSITORY ON GITHUB.COM AND
CLONING THAT IN THE WORKSPACE, GOING BACK AND FORTH

1. Own a Github.com account, GitHub Pro account free  mandatory
2. Cd ..
3. Make sure the new repository in github.com is private, Add a readme,

create repository
4. Git clone https://github.com/Nimisha-Roy/<the remote repository>:

myproject2: to download remote repository to workspace with a new
folder name using HTTPS protocol [pause]

5. Cd myproject2
6. Echo created a newfile > newfile: create a new file called newfile
7. Git add newfile: stage it
8. Git commit -m "added new file" : commit it to local repository
9. Git push: push it to the remote repository
10. If someone else made changes to remote and you wanted working

directory to reflect those changes  Git pull

The typical user scenario for this will be that each user will have their local
copy, work on some local file, commit them and push them to a remote
repository where others can get changes, do further changes, push them, and
so on and so forth.

PART 3: CREATING AND MERGING BRANCHES

Branching means making a copy of the current project so that we can work on
that copy independently from the other copies, be it other branches or the main
branch. Then we can decide whether we want to keep both branches or merge
them at some point. This is particularly useful because if you think about how we
generally develop software, we work with artifacts. For example, we might need
to create a separate copy of your work space to do some experiments. You want
to change something in the code; you are not sure it will work out, and you do not
want to touch your main copy (main branch). So that is the perfect application for

https://github.com/Nimisha-Roy/%3cthe%20remote%20repository%3e

branching. If you are happy with the changes, you will merge that branch with the
original one; If you are not happy with the changes, you will delete that branch.

Git branch: to see which branches are present. (Until this point of the
demonstration, we only had one main branch)

Git branch newBranch : to create a new branch

Git branch: We have two branches now, with the current branch (main) as star
marked

Git checkout newBranch: To switch to newBranch

Git checkout -b testing: To create a new branch and switch to it

Create a new file called testfile in testing branch, and push it to the remote
repository

Create testfile with testing code

Git add testFile – staged state

Git commit -m "test file added" – committed state [pause]

Move to the new branch and merge testing branch with main branch since we
are happy with the changes made in the testing branch

Git checkout main

Git merge testing: merge testing branch with main [should not work this way –
PR, may have merge conflict]

Let us delete the testing branch because it is no longer of any use

Git branch -d testing

Git push

PART 4: BRANCH CONFLICTS
So, something that might happen when you merge a branch is that you might
have conflicts, such as changing the same file in two different branches. Let's see
an example of that.

Move to the main branch and change newfile there

Git branch : It shows we have two branches, main and newBranch

Notepad newfile : Change newfile

Git commit -a -m "new file changed in main branch"

Move to the newBranch branch and change newfile there

Git checkout newBranch : Change newfile again

Git commit -a -m "new file changed in newBranch"

Now, newfile is modified independently in newBranch and main branch

Move to the main branch and merge newBranch

Git checkout main

Git merge newBranch

Conflict message displayed since both branches have independent copies of
newfile

How to Resolve:

Open newfile

You will see annotations showing the different versions in both branches. You can
edit that file, decide which version to keep and which to delete, delete the
annotations and save the file.

Git commit -a -m "merged version of newfile" – Git already has merged the
branches.

Git push and see that main has the merged version. Newbranch has the old
version. You can see newbranch in github.

Git branch -d newBranch: We have now resolved the conflict and can delete the
newBranch

PART 5: GIT TAG

Git tag sprint1

git push origin sprint1 : Tag created as a snapshot of the work done until that
point in time

Create some changes. Create a file called codeaftertag. Add, commit and push.

Fetch tag in your sprint demo

git fetch --tags

git checkout sprint1

you cant see codeaftertag.

This will put you in a "detached HEAD" state, showing the repository exactly as it
was at the time <tagname> was created.

PART 6: CODE REVIEWS

Pull requests and code reviews play a crucial role in the collaborative
development process. A pull request is a mechanism for suggesting changes to a
codebase, allowing contributors to propose modifications, bug fixes, or new
features. Once a pull request is submitted, it undergoes a code review, where
other team members carefully examine the proposed changes. Code reviews help
maintain code quality, improve consistency, and catch potential bugs or issues
early on. They foster collaboration, knowledge sharing, and ensure that the
codebase aligns with established standards. Through pull requests and code
reviews, teams can work together effectively, producing high-quality software
with fewer errors and better overall maintainability.

Setup your branch protection Rule

Always have a branch protection rule enforced in your main GitHub repository
branch.

Settings  Branches  Branch Protection Rule  Require a pull request before
merging

Now when you push something to the main repository, you will be prompted to
create a PR (image 1 below). You can assign someone or yourself to review the PR
(image 2 below). If you enable “Require approvals” in your settings, you will not
be able to merge your PR yourself. This is the ideal setting in workplace.

While reviewing a PR, you can compare changes in files (image 3 below), add
comments within lines of code (+ sign in image 3 below), and make a final review,
either by commenting, approving changes or requesting changes (image 4 below).

Look at cs3300-demo

Add a new branch, add a new file, push it, create PR, review.

Image 1

Image 2

Image 3

Image 4

