
SonarQube Setup with GCP and GitHub
Actions - Detailed Instructional Guide
Created by CS2340 Instructional Team (Special Thanks to your TA - Pawan Medidi)

YouTube Video instructions here: https://www.youtube.com/watch?v=QWNt-1Rl7jI
Following this video step-by-step should be sufficient to complete the setup process. This setup
needs to be done by 1 person on a team.

This PDF is here for those who get confused in the video with certain steps. Please make sure to
follow very carefully. You can follow the video OR this PDF to complete the setup. Finally, if you
get confused in any step, ask in the respective Ed discussion megathread.

IMPORTANT: One of the most crucial steps is outlined at the end in Step 7, 'Final Things to
Do - IMPORTANT.' Without following these two steps, the process will NOT work. It’s essential
to complete them, whether you use the PDF or the YouTube video. The method shown in the
video might vary due to differences in GCP account configurations or GitHub permissions. If you
encounter issues, refer to this PDF for additional guidance. After thorough testing, our approach
has worked for all who have tested it.

Introduction
This guide will provide a step-by-step, click-by-click walkthrough of setting up SonarQube on
Google Cloud Platform (GCP) and integrating it with GitHub Actions for automated code quality
analysis. Along the way, we will cover what SonarQube is, how you can utilize GCP’s free credits,
and how GitHub Actions functions as a powerful CI/CD tool.

What is SonarQube?

SonarQube is an open-source platform that performs continuous inspection of your code,
detecting bugs, vulnerabilities, and other issues like code smells. SonarQube ensures code
quality by providing developers with detailed reports, metrics, and trends that help improve the
health of their projects.

GCP Free Credits

Google Cloud Platform (GCP) provides $300 in free credits to new users, which you can use
for over 90 days. This is a perfect opportunity to run virtual machines, containers, and storage
needed for deploying and hosting SonarQube. The GCP credits will be more than sufficient for

https://www.youtube.com/watch?v=QWNt-1Rl7jI

running this setup for the duration of this semester. Important: Only one member per group
needs to set up the GCP account. A credit card is required for verification, but Google will
not charge unless you manually upgrade to a paid plan. We will send several reminders
towards the end of Sprint 4 to ensure you shut down your project to avoid any charges.

What are GitHub Actions?

GitHub Actions is a CI/CD (continuous integration, continuous deployment) tool that automates
and manages your software development workflow directly within GitHub. It allows you to build,
test, and deploy your code automatically after pushing changes, enabling continuous integration
and delivery. Integrating GitHub Actions with SonarQube allows you to run quality checks on your
code every time you push changes to your repository.

Detailed Setup Guide

Step 1: Setting up a Service Account on GCP

1. Sign in to Google Cloud Platform (GCP)
a. Create a new Google account. This would be better if you have used free google cloud

credits using your google account before.
b. Go to console.cloud.google.com and log in with your new Google credentials.

2. Enable Required APIs
a. Select APIs & Services > Dashboard in the left navigation menu.
b. Create a new project.
c. Click Enable APIs and Services at the top.
d. Search for and enable the following APIs:

i. Cloud Compute Engine API
ii. IAM API

iii. Cloud Resource Manager API
e. It may ask you to set up a Billing account when you try and enable an API. Choose Enable

Billing  Manage Billing Account  Enter payment profile as organization, and enter your
details and payment method.

https://console.cloud.google.com/

3. Navigate to IAM & Admin
In the left sidebar, scroll down and select IAM & Admin to open the IAM Dashboard.

4. Create a Service Account
a. On the left-hand menu, select Service Accounts.
b. Click + CREATE SERVICE ACCOUNT at the top.
c. Name your service account (e.g., sonarqube-service-account).
d. Optionally, add a description, then click CREATE AND CONTINUE.

5. Grant Access to the Service Account
a. On the next page, under the Role section:

i. Click Select a role.
ii. Choose Storage > Storage Admin.

b. Click Continue.
c. Skip the Grant users access step by clicking Done.

You now have a service account with the Storage Admin role.

6. Download the JSON Key
a. In the list of service accounts, find the account you just created.
b. Click the three dots (options) on the right side, then select Manage Keys.
c. Click ADD KEY > Create new key.
d. In the pop-up window:

i. Select JSON as the key type.
ii. Click Create.

This will download a JSON file to your computer, which you'll use later in GitHub Actions.

Step 2: Configuring GitHub Actions with Secrets

1. Push Your Code to GitHub:
You should be using your group’s GitHub repository. The root folder should have 3 folders:
Project, SOLID_GRASP, and Code Smells. SonarQube will be analyzing all 3 folders to create a
leaderboard for the project, SOLID_GRASP, and Code smell assignments.

2. Add Secrets to GitHub Actions:
a. Go to your repository page on GitHub.
b. Click the Settings tab at the top.

c. In the left sidebar, click Secrets and variables, then click Actions.
d. Click New repository secret. You’ll add the following secrets:

i. Google Application Credentials:
1. For Name, enter GOOGLE_APPLICATION_CREDENTIALS
2. For Value, open the JSON key file you downloaded earlier, copy its entire

content, and paste it into the value field. Click Add secret.

ii. Google Project ID:
1. Create a new repository secret on the same page as the picture above.
2. For Name, enter GOOGLE_PROJECT_ID
3. For Value, go to the GCP Console, click the project name in the top

navigation bar to view your Project ID, and copy/paste it here. Click Add
secret.

Step 3: Setting Up Google Compute Engine VM

1. Navigate to Compute Engine:
a. In the GCP Console, click the Navigation Menu (three horizontal lines in the top left

corner).
b. Scroll down to Compute Engine > VM Instances.
c. Click Create Instance at the top of the page.

2. Configure the VM Instance:
a. Name: Enter a name, e.g., sonarqube-vm
b. Region: Choose a region close to your location for better performance (should be us-

east1 for Atlanta. You can choose zone b, c, or d).
c. Machine Type: Set to e2-medium (2 vCPU, 4 GB memory) for adequate resources.
d. Boot Disk: Click Change and:

i. Select Debian GNU/Linux (This should be chosen regardless of your OS)
ii. Set Size to 30 GB.
iii. Click Select.

e. Firewall: Check both Allow HTTP traffic and Allow HTTPS traffic.

3. Create the VM:
Click Create at the bottom of the page.

4. SSH into the VM:
a. Once your VM is created, click SSH on the VM instance page. To access the SSH, go

to VM instances page and click the SSH button underneath Connect

b. A terminal will open where you can run commands on your VM.

5. Add a Self-hosted Runner to Google Compute Engine Instance:

a. Now go to the GitHub repository and click on Settings  Actions  Runners. Click on
Self-Hosted Runners

b. Now select Linux and architecture X-64 (Again, this should be chosen regardless of the
OS of your laptop).

c. Copy the create folder command: mkdir actions-runner && cd actions-runner from the
above picture for my repository.

d. Paste this into your SSH-in-browser terminal window

e. Download the latest runner package and extract the installer using commands on your
github repo: curl -o actions-runner-linux-x64-2.319.1.tar.gz -L
https://github.com/actions/runner/releases/download/v2.319.1/actions-runner-
linux-x64-2.319.1.tar.gz and tar xzf ./actions-runner-linux-x64-2.319.1.tar.gz for me.

f. Create the runner and start the configuration experience according to commands on your
GitHub repository.

https://github.com/actions/runner/releases/download/v2.319.1/actions-runner-linux-x64-2.319.1.tar.gz
https://github.com/actions/runner/releases/download/v2.319.1/actions-runner-linux-x64-2.319.1.tar.gz

g. The last step is to run it: ./run.sh

Step 4: Installing Docker and SonarQube on the VM

1. Install Docker:
a. In the SSH terminal, run the following commands to install Docker:

sudo apt-get update
sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys
843C48A565F8F04B
sudo apt-get update

sudo apt-get install -y jq
sudo apt-get install docker.io -y
sudo usermod -aG docker ubuntu newgrp docker
sudo chmod 777 /var/run/docker.sock

b. Next, pull the SonarQube image from Docker Hub:
docker run -d --name sonar -p 9000:9000 sonarqube:lts-community
Note that we are using port 9000 in the firewall of our instance.

c. Now copy the external IP address of your Google engine instance as shown
the image below.

For example, mine would be <34.23.52.136:9000> (append :9000 at the end)

2. Update Firewall Rules:
a. To access SonarQube on port 9000, you need to update the firewall rules:

i. In the GCP Console, click VPC network > Firewall
ii. Click Create firewall rule.
iii. Set the following:

1. Name: allow-sonarqube
2. Targets: All instances in the network.
3. Source IP ranges: 0.0.0.0/0
4. Protocols and Ports: Allow TCP on port 9000.

iv. Click Create.

Step 5: Accessing SonarQube Dashboard

1. Access SonarQube:
a. In your browser, go to http://<your-vm-external-ip>:9000
b. In my case, it is: http://34.23.52.136:9000
c. Use the default credentials:

a. Username: admin
b. Password: admin

d. You’ll be prompted to change the password after your first login.
a. In case you are having issues with login, clear browser cookies.

e. Change your password to cs2340

2. Integrate SonarQube with GitHub Actions

a. Go to SonarQube Dashboard
b. Under How to create your project, Click on Manually.

c. Enter a project display name and key. Use cs2340

d. On the next page, Click “With GitHub Actions”

3. Generate a Token for GitHub Actions:
a. Click on Generate Token

b. Name the token (e.g., github-actions) ,expires in 90 days and click Generate. If

asked, select token type as global analysis token.
c. Copy the generated token.

4. Add GitHub secrets:
a. Go to GitHub repository  Settings  Secrets and Variables  Actions  Add Secret
b. Write name as SONAR_TOKEN and paste your generated token as the secret.
c. Add another secret. Write name as SONAR_HOST_URL and paste the url shown in the

value field as the secret.

5. Go to the Sonarqube dashboard again

Click on Other and keep this tab open for Step 6.

Step 6: Setting Up GitHub Actions Workflow

1. Create GitHub Actions Workflow:
a. In your github’s root directory, create a folder .github/workflows/build.yml. So

there will be a folder at the root of your project called .github, then another folder called
workflows, and inside is the file called build.yml. .github  workflows  build.yml

b. Copy the contents from SonarQube into build.yml file (point 3 in the above image).

2. Create sonar-project.properties files
a. In the same root directory, add another file called sonar.properties.

b. Use the correct sonar-project.properties file here, not the one in the YouTube
video:
sonar.projectKey=YOUR_PROJECT_KEY
sonar.sources=.
sonar.language=java
sonar.java.binaries=.

3. Push Changes to GitHub:
a. Push your changes to the GitHub repository.

b. You can go to Actions and see build success. This means that trigger GitHub Actions
was triggered successfully on pushing.

c. SonarQube scan will start automatically. You will see the results on your SonarQube
browser after you click Finish Tutorial.

Step 7: Final Things To Do - **IMPORTANT**

1. Ensure Project is Compiled:
Make sure your project/assignment is properly compiled and that the .class files are present
before running the SonarQube analysis. Otherwise, your GitHub Actions build may fail.

2. Correct SonarQube Properties File:
Use the correct sonar-project.properties file here, not the one in the YouTube video.
Check Step 6 point 2b.

FINALLY! Look at the analysis!!

The analysis you see is for your entire GitHub repository, including your project, SOLID_GRASP,
and code smell assignments. There will be three assignments on GradeScope corresponding to
these three submissions, and the output from autograder will be the specific output from the three
separate files.

You can click on each type of error and understand and fix it. You can also go to issues to look at
the errors in detail.

3.

	SonarQube Setup with GCP and GitHub Actions - Detailed Instructional Guide
	Introduction
	What is SonarQube?
	GCP Free Credits
	What are GitHub Actions?

	Detailed Setup Guide
	Step 1: Setting up a Service Account on GCP
	1. Sign in to Google Cloud Platform (GCP)
	2. Enable Required APIs
	3. Navigate to IAM & Admin
	4. Create a Service Account
	5. Grant Access to the Service Account
	6. Download the JSON Key

	Step 2: Configuring GitHub Actions with Secrets
	1. Push Your Code to GitHub:
	2. Add Secrets to GitHub Actions:

	Step 3: Setting Up Google Compute Engine VM
	1. Navigate to Compute Engine:
	2. Configure the VM Instance:
	3. Create the VM:
	4. SSH into the VM:
	5. Add a Self-hosted Runner to Google Compute Engine Instance:

	Step 4: Installing Docker and SonarQube on the VM
	1. Install Docker:
	2. Update Firewall Rules:

	Step 5: Accessing SonarQube Dashboard
	1. Access SonarQube:
	2. Integrate SonarQube with GitHub Actions
	3. Generate a Token for GitHub Actions:
	4. Add GitHub secrets:
	5. Go to the Sonarqube dashboard again

	Step 6: Setting Up GitHub Actions Workflow
	1. Create GitHub Actions Workflow:
	2. Create sonar-project.properties files
	3. Push Changes to GitHub:

	Step 7: Final Things To Do - **IMPORTANT**
	1. Ensure Project is Compiled:
	2. Correct SonarQube Properties File:

