
CS3300: Introduction to Software Engineering  Nimisha Roy 

DEMO NOTES FOR SIMPLE WEB APPLICATION USING SPRING BOOT 
IN VISUAL STUDIO CODE (VSCode) 

This guide will help you create a basic web application using Spring Boot, a popular framework 
that simplifies Java development, especially for web applications. The demo covers setting up a 
project in Visual Studio Code (VSCode), creating a REST API, and running the application. 

Step 1: Set Up Your Development Environment 

1. Install Required Extensions: 
o Make sure you have the Spring Boot Extension Pack and Extension Pack for 

Java installed on VSCode. 
o These extensions provide tools and support for developing Spring Boot 

applications. They offer features like project templates, code completion, and 
debugging support for Java development. 

Step 2: Create a New Spring Boot Project Using Spring Initializr 

1. Open the Command Palette: 
o Press Ctrl+Shift+P to open the Command Palette in VSCode. The Command 

Palette is a quick way to access various functionalities within the editor. 
2. Search for Spring Initializr: 

o Type "Spring Initializr" in the search bar and select "Spring Initializr: Create 
a Maven Project". 

o Spring Initializr is a web-based tool that helps you bootstrap a new Spring Boot 
project by providing options to choose the project dependencies, packaging type, 
and other settings. 

3. Follow the Prompts: 
o Select Spring Boot Version: Choose 3.3.3. This is the latest stable version of 

Spring Boot. Make sure you select a version that is compatible with your Java 
Development Kit (JDK). 

o Choose Project Language: Select Java. Spring Boot supports multiple 
languages, but Java is the most commonly used. 

o Input Group ID: Enter "com.cs3300". The Group ID typically represents the 
base package name of the project and follows a reverse domain name pattern. 

o Input Artifact ID: Enter "spring_demo". The Artifact ID is the name of the 
project and is also used to name the output artifact (JAR/WAR file). 

o Specify Packaging Type: Choose Jar. JAR packaging will create a standalone 
executable JAR file with an embedded server, suitable for running the application 
independently. 

o Select Java Version: Choose 17, 21, or 22. Make sure this version matches the 
JDK installed on your machine. 

o Add Dependencies: Select Spring Web. Since we are building a web 
application, this dependency will include the necessary libraries to create REST 
APIs, handle HTTP requests, etc. 

4. Confirm Dependencies: 



CS3300: Introduction to Software Engineering  Nimisha Roy 

o After selecting the dependencies, ensure that Spring Web is listed, and press 
Enter to continue. This step is crucial as missing dependencies could cause your 
project not to function as expected. 

5. Choose Project Location: 
o Choose a location on your computer where you want to save your new project. 

After selecting the location, click Open to open the project in VSCode. 
6. Verify the Project Setup: 

o Open the pom.xml file. This file is the Maven configuration file for your project. 
It should contain the spring-boot-starter-web dependency: 

<dependency> 
    <groupId>org.springframework.boot</groupId> 
    <artifactId>spring-boot-starter-web</artifactId> 
</dependency> 

o The presence of this dependency ensures that all necessary libraries for creating a 
web application are included. 

Step 3: Create a REST API Endpoint 

1. Define a REST Controller: 
o Navigate to src/main/java/com/cs3300/spring_demo in your project 

directory. 
o Create a new Java class named StudentsController.java. 

2. Annotate the Class as a REST Controller: 
o Inside StudentsController.java, use the @RestController annotation to 

define the class as a REST controller. This tells Spring Boot that the class will 
handle HTTP requests: 

// Import necessary packages 
import org.springframework.web.bind.annotation.RestController; 
import org.springframework.web.bind.annotation.GetMapping; 
import java.util.List; 
import java.util.Arrays; 
 
// Define the class as a REST controller 
@RestController 
public class StudentsController { 
 
    // Create a GET endpoint to return a list of students 
    @GetMapping("/students") 
    public List<Student> getAllStudents() { 
        // Return a list of students as JSON response 
        return Arrays.asList( 
            new Student(1, "Michael"), 
            new Student(2, "Alice") 
        ); 
    } 
} 

o Explanation: 



CS3300: Introduction to Software Engineering  Nimisha Roy 

 @RestController marks the class as a controller where every method 
returns a domain object instead of a view. 

 @GetMapping("/students") defines a GET endpoint that listens on the 
/students URL path. When accessed, it returns a list of students. 

3. Create the Student Class: 
o Inside the same package, create a new Java class named Student.java. This 

class represents the data model for the students. 
o Define the following fields and methods: 

public class Student { 
    // Fields 
    private int id; 
    private String name; 
 
    // Constructor to initialize fields 
    public Student(int id, String name) { 
        this.id = id; 
        this.name = name; 
    } 
 
    // Getter and Setter for ID 
    public int getId() { 
        return id; 
    } 
 
    public void setId(int id) { 
        this.id = id; 
    } 
 
    // Getter and Setter for Name 
    public String getName() { 
        return name; 
    } 
 
    public void setName(String name) { 
        this.name = name; 
    } 
 
    // toString method to print details 
    @Override 
    public String toString() { 
        return "Student [id=" + id + ", name=" + name + "]"; 
    } 
} 

o Explanation: 
 This Student class has two fields: id and name. 
 It includes a constructor to initialize these fields, getters, and setters for 

accessing and modifying them, and a toString method for output. 

Step 4: Run the Application 



CS3300: Introduction to Software Engineering  Nimisha Roy 

1. Run the Application: 
o In VSCode, click on the Run button, or open the integrated terminal and run: 

./mvnw spring-boot:run 

o Alternatively, you can build the JAR file and run it using: 

mvn clean package 
java -jar target/spring_demo-0.0.1-SNAPSHOT.jar 

o This will start the embedded server (like Tomcat), and your application will be up 
and running. 

2. Check for Port Conflicts: 
o If port 8080 is already occupied by another process, change the port by adding the 

following line to src/main/resources/application.properties: 

server.port = 8081 

o This configures the application to run on port 8081 instead. 
3. Access the REST API: 

o Open your web browser and navigate to http://localhost:8080/students (or 
http://localhost:8081/students if you changed the port). 

o You should see a JSON response with the list of students: 

[ 
  {"id": 1, "name": "Michael"}, 
  {"id": 2, "name": "Alice"} 
] 

Step 5: Debugging and Configuration 

1. Enable Debugging: 
o To see more detailed logs for debugging purposes, add the following line to your 

application.properties file: 

logging.level.org.springframework=DEBUG 

o This will provide additional information about what is happening during the 
startup and execution of the application, making it easier to identify any issues. 

Conclusion: 

By following these steps, you have successfully created a simple Spring Boot web application 
with a REST API endpoint that returns a list of students. This demonstration shows how easy it 
is to get started with Spring Boot using VSCode, from setting up the project to running a 
functional web service. You can further expand this application by adding more endpoints, 
services, and integrating a database. 


	DEMO NOTES FOR SIMPLE WEB APPLICATION USING SPRING BOOT IN VISUAL STUDIO CODE (VSCode)
	Step 1: Set Up Your Development Environment
	Step 2: Create a New Spring Boot Project Using Spring Initializr
	Step 3: Create a REST API Endpoint
	Step 4: Run the Application
	Step 5: Debugging and Configuration

	Conclusion:

