
CS 3300 Intro to Software Engineering | Fall 2022

Announcements

1

• GCP Assignment
• Check out the helpful resources on Deploying .jar files on Google Cloud

posted under Additional Resources on class website
• The key is setting up the app.yaml file

• Enable the links to your API after the due date of the GCP assignment
(October 11, 11:59 PM)

• We will post an announcement as soon as your assignment has been graded
so that you can disable it and conserve the GCP credits.

• Mid term Feedback Survey Released Today
• Please provide express any concerns/comments you have about the course so

far.
• Your responses will be stored anonymously

Lecture 11: Software Architecture &
Design

Nimisha Roy

CS3300 Introduction to Software Engineering

nroy9@gatech.edu

Slides adapted from Alessandro Orso

CS 3300 Intro to Software Engineering | Fall 2022

Traditional Software Development Phases

Requirements

Engineering Design Implementation

Verification &

Validation

Maintenance

3

Relevant industrial job position:
Software Architect

CS 3300 Intro to Software Engineering | Fall 2022

What is Software Architecture?

4

Perry and Wolf
SWA = { Elements, Form, Rationale}

What (processes, data, connectors) ; How (properties,
relationship between elements) ; Why (justification for
elements and relationships)

Shaw and Garland
SWA = [is a level of design that] involves
• Description of elements from which systems are built
• Interactions among those elements
• Patterns that guide their composition
• Constraints on these patterns

CS 3300 Intro to Software Engineering | Fall 2022

A general definition of SWA

5

Set of principal design decisions about the system

Blueprint of a software system
• Structure
• Behavior
• Interaction
• Nonfunctional properties

CS 3300 Intro to Software Engineering | Fall 2022

Temporal Aspect

6

A SWA is not defined at once, but iteratively, over time

At any point in time, there is a SWA, but it will change over
time

Design decisions are made, unmade, and changed over a
system’s lifetime.

CS 3300 Intro to Software Engineering | Fall 2022

Prescriptive vs. Descriptive Architecture

7

A prescriptive architecture captures the design
decisions made prior to the system’s construction
=> as- conceived SWA

A descriptive architecture describes how the
system has actually been built
=> as- implemented SWA

CS 3300 Intro to Software Engineering | Fall 2022

Architectural Evolution

8

When a system evolves, ideally its prescriptive architecture
should be modified first

In practice, this rarely happens
• Developer’s sloppiness
• Short deadlines
• Lack of documented prescriptive architectures

CS 3300 Intro to Software Engineering | Fall 2022

Architectural Degradation

9

Architectural drift : Introduction of
architectural design decisions
orthogonal to a system’s prescriptive
architecture

Architectural erosion : Introduction of
architectural design decisions that
violate a system’s prescriptive
architecture

CS 3300 Intro to Software Engineering | Fall 2022

Architectural Recovery

10

Drift and Erosion => Degraded architecture

Keep tweaking the code (typically
disastrous)

Architectural recovery: determine
SWA from implementation and fix it

CS 3300 Intro to Software Engineering | Fall 2022

Example Quiz

11

Which of the following statements is true.

[] Prescriptive architecture and descriptive architecture are typically the same.

[] Architectural drift results in unnecessarily complex architectures.

[] Architectural erosion is less problematic than architectural drift.

[] The best way to improve a degraded architecture, is to keep fixing the code
until the system starts looking and behaving as expected

CS 3300 Intro to Software Engineering | Fall 2022

An example from the Linux Kernel

12

Prescriptive Architecture Descriptive Architecture

File System

Memory Manager Network Interface

Process Scheduler Inter process
Communication

Initialization Library

File System

Memory Manager Network Interface

Process Scheduler Inter process
Communication

Initialization Library

CS 3300 Intro to Software Engineering | Fall 2022

Another example: iRODS

13

Prescriptive Architecture Descriptive Architecture

Data grid system that was built by a biologist. It's a system for storing and accessing big data.

CS 3300 Intro to Software Engineering | Fall 2022

More examples: Hadoop

14

Open-source software framework for storage and large-scale processing of data sets

Descriptive Architecture

CS 3300 Intro to Software Engineering | Fall 2022

Final example: Bash

15

Descriptive Architecture of the command component of Bash.

Unix shell written as a free software replacement for the traditional Bourne shell

Lack of cohesion in the component

High coupling among components

CS 3300 Intro to Software Engineering | Fall 2022

Example Quiz

16

Which of the following are ideal characteristics of an architectural design

[] Scalability

[] Low cohesion

[] Low coupling

CS 3300 Intro to Software Engineering | Fall 2022

Software Architecture’s Elements

17

A software architecture typically is not a monolith composition, but an
interplay of different elements

Processing Elements

Data Elements

Interaction elements

Components

Connectors
Configuration

CS 3300 Intro to Software Engineering | Fall 2022

Components, Connectors, and Configurations

18

Software Component: Architectural Entity that
• encapsulates a subset of the system’s functionality and/or

data
• Restricts access to that subset via. an explicitly defined

interface

Software connector: Architectural entity effecting and regulating
interaction among components

Architectural configuration: Association between
components and connectors of a software
architecture

CS 3300 Intro to Software Engineering | Fall 2022

An example configuration

19

Deployment Architectural Perspective

A system cannot fulfill
its purpose until it is

deployed. And
deploying a system
involves physically

placing the system's
executable modules

on the hardware
devices on which they
are supposed to run.

• A system cannot fulfill its purpose
until it is deployed.

• Deploying a system involves physically
placing the system's executable
modules on the hardware devices on
which they are supposed to run.

• Deployment view of an architecture
can be critical in assessing whether
the system will be able to satisfy its
requirement.

• Enough memory available? Power
consumption profile handled by
hardware? Enough network
bandwidth for interactions?

20

CS 3300 Intro to Software Engineering | Fall 2022

Architectural Styles

21

An architectural style defines “a family of systems in terms of
a pattern of structural organization; a vocabulary of
components and connectors, with constraints on how they
can be combined”

M. Shaw and D. Garlan, 1996

Basically, named collection of architectural design decisions
applicable in a given context.

CS 3300 Intro to Software Engineering | Fall 2022

Architectural Styles

Pipes and Filters
(Unix pipes)

Event – Driven
(GUI)

Publish- Subscribe
(Twitter)

Client- Server
(Email)

Peer - to – Peer
(Skype)

Representational State Transfer
(WWW)

22

CS 3300 Intro to Software Engineering | Fall 2022

Example Quiz

23

Consider the following architectural styles that we just saw:
pipes and filters (A),
event driven (B),
publish-subscribe (C),
client-server (D),
peer-to-peer (E),
REST (F). Mark which style(s) characterizes the following systems.

[] World Wide Web

[] Skype

[] Android OS

[] Dropbox

F, D

D, E

B, C

D

CS 3300 Intro to Software Engineering | Fall 2022

Peer-to-Peer (P2P) Architectures

Decentralized resource sharing and discovery

Two representative examples:

Napster

Skype

24

CS 3300 Intro to Software Engineering | Fall 2022

NAPSTER

25

CS 3300 Intro to Software Engineering | Fall 2022

SKYPE

26

CS 3300 Intro to Software Engineering | Fall 2022

SKYPE

27

CS 3300 Intro to Software Engineering | Fall 2022

Takeaways

A great architecture is a ticket to success

A great architecture reflects deep
understanding of the problem domain

A great architecture normally combines aspects
of several simpler architectures

28

