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Announcements
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• GCP Assignment
• Check out the helpful resources on Deploying .jar files on Google Cloud 

posted under Additional Resources on class website
• The key is setting up the app.yaml file

• Enable the links to your API after the due date of the GCP assignment 
(October 11, 11:59 PM) 

• We will post an announcement as soon as your assignment has been graded 
so that you can disable it and conserve the GCP credits. 

• Mid term Feedback Survey Released Today
• Please provide express any concerns/comments you have about the course so 

far. 
• Your responses will be stored anonymously
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Traditional Software Development Phases

Requirements 

Engineering Design Implementation

Verification & 

Validation

Maintenance
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Relevant industrial job position: 
Software Architect
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What is Software Architecture?
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Perry and Wolf
SWA = { Elements, Form, Rationale}

What (processes, data, connectors) ; How (properties, 
relationship between elements) ; Why (justification for 
elements and relationships)

Shaw and Garland
SWA = [ is a level of design that] involves
• Description of elements from which systems are built
• Interactions among those elements
• Patterns that guide their composition
• Constraints on these patterns
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A general definition of SWA
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Set of principal design decisions about the system

Blueprint of a software system
• Structure
• Behavior
• Interaction
• Nonfunctional properties
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Temporal Aspect
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A SWA is not defined at once, but iteratively, over time

At any point in time, there is a SWA, but it will change over 
time

Design decisions are made, unmade, and changed over a 
system’s lifetime.
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Prescriptive vs. Descriptive Architecture
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A prescriptive architecture captures the design 
decisions made prior to the system’s construction
=> as- conceived SWA

A descriptive architecture describes how the 
system has actually been built
=> as- implemented SWA
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Architectural Evolution
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When a system evolves, ideally its prescriptive architecture 
should be modified first

In practice, this rarely happens
• Developer’s sloppiness
• Short deadlines
• Lack of documented prescriptive architectures
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Architectural Degradation
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Architectural drift : Introduction of 
architectural design decisions 
orthogonal to a system’s prescriptive 
architecture

Architectural erosion : Introduction of 
architectural design decisions that 
violate a system’s prescriptive 
architecture
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Architectural Recovery
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Drift and Erosion => Degraded architecture

Keep tweaking the code (typically 
disastrous)

Architectural recovery: determine 
SWA from implementation and fix it
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Example Quiz
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Which of the following statements is true.

[   ] Prescriptive architecture and descriptive architecture are typically the same.

[   ] Architectural drift results in unnecessarily complex architectures.

[   ] Architectural erosion is less problematic than architectural drift.

[   ] The best way to improve a degraded architecture, is to keep fixing the code 
until the system starts looking and behaving as expected



CS 3300 Intro to Software Engineering | Fall 2022

An example from the Linux Kernel
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Prescriptive Architecture Descriptive Architecture

File System

Memory Manager Network Interface

Process Scheduler Inter process 
Communication

Initialization Library

File System

Memory Manager Network Interface

Process Scheduler Inter process 
Communication

Initialization Library
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Another example: iRODS
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Prescriptive Architecture Descriptive Architecture

Data grid system that was built by a biologist. It's a system for storing and accessing big data. 
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More examples: Hadoop
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Open-source software framework for storage and large-scale processing of data sets

Descriptive Architecture
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Final example: Bash
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Descriptive Architecture of the command component of Bash.

Unix shell written as a free software replacement for the traditional Bourne shell

Lack of cohesion in the component

High coupling among components
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Example Quiz
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Which of the following are ideal characteristics of an architectural design

[   ] Scalability

[   ] Low cohesion

[   ] Low coupling
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Software Architecture’s Elements
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A software architecture typically is not a monolith composition, but an 
interplay of different elements

Processing Elements

Data Elements

Interaction elements

Components

Connectors
Configuration
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Components, Connectors, and Configurations
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Software Component: Architectural Entity that 
• encapsulates a subset of the system’s functionality and/or 

data
• Restricts access to that subset via. an explicitly defined 

interface 

Software connector: Architectural entity effecting and regulating 
interaction among components

Architectural configuration: Association between 
components and connectors of a software 
architecture
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An example configuration
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Deployment Architectural Perspective

A system cannot fulfill 
its purpose until it is 

deployed. And 
deploying a system 
involves physically 

placing the system's 
executable modules 

on the hardware 
devices on which they 
are supposed to run.

• A system cannot fulfill its purpose 
until it is deployed. 

• Deploying a system involves physically 
placing the system's executable 
modules on the hardware devices on 
which they are supposed to run.

• Deployment view of an architecture 
can be critical in assessing whether 
the system will be able to satisfy its 
requirement.

• Enough memory available? Power 
consumption profile handled by 
hardware? Enough network 
bandwidth for interactions?

20
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Architectural Styles
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An architectural style defines “a family of systems in terms of 
a pattern of structural organization; a vocabulary of 
components and connectors, with constraints on how they 
can be combined”

M. Shaw and D. Garlan, 1996

Basically, named collection of architectural design decisions 
applicable in a given context.
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Architectural Styles

Pipes and Filters
(Unix pipes)

Event – Driven
(GUI)

Publish- Subscribe
(Twitter)

Client- Server
(Email)

Peer - to – Peer
(Skype)

Representational State Transfer 
(WWW)

22



CS 3300 Intro to Software Engineering | Fall 2022

Example Quiz
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Consider the following architectural styles that we just saw: 
pipes and filters (A), 
event driven (B), 
publish-subscribe (C), 
client-server (D), 
peer-to-peer (E), 
REST (F). Mark which style(s) characterizes the following systems.

[        ]  World Wide Web

[        ] Skype

[        ] Android OS

[        ] Dropbox

F, D

D, E

B, C

D
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Peer-to-Peer (P2P) Architectures

Decentralized resource sharing and discovery

Two representative examples:

Napster

Skype

24
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NAPSTER
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SKYPE
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SKYPE
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Takeaways

A great architecture is a ticket to success

A great architecture reflects deep 
understanding of the problem domain

A great architecture normally combines aspects 
of several simpler architectures
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