
CS 3300 Intro to Software Engineering | Fall 2022

Announcements

1

• GCP Assignment Due Today
• Enable the links to your API tomorrow morning
• We will post an announcement as soon as your assignment has been graded

so that you can disable it and conserve the GCP credits.

• Project 1 due this Thursday

Lecture 13: Design Patterns
Nimisha Roy

CS3300 Introduction to Software Engineering

nroy9@gatech.edu

Slides adapted from Alessandro Orso

History of Design Patterns

CS 3300 Intro to Software Engineering | Fall 2022 Slide adapted from Alessandro Orso

1977
Christopher Alexander introduces the idea of patterns: successful solutions to
problems

1987
Ward Cunningham and Kent Beck leverage Alexander’s idea in the context of OO
language

1987
Erich Gamma’s dissertation on importance of patterns and how to capture them

1992
Jim Coplien’s book on Advanced C++ Programming styles and idioms

History of Design Patterns

CS 3300 Intro to Software Engineering | Fall 2022 Slide adapted from Alessandro Orso

Erich Gamma
Richard Hem
Ralph Johnson
John Vlissides
(gang of four)

Book “Design Patterns: Elements of
Reusable OO Software”

Patterns Catalogue

CS 3300 Intro to Software Engineering | Fall 2022 Slide adapted from Alessandro Orso

Fundamental Patterns
Delegation pattern
Interface pattern
Proxy pattern
…

Creational Patterns
Abstract Factory pattern
Factory Method pattern
Lazy Initialization pattern
Singleton pattern
…

Structural Patterns
Adapter pattern
Bridge pattern
Decorator pattern
…

Behavioral Patterns
Chain of responsibility pattern
Iterator pattern
Observer pattern
State Pattern
Strategy pattern
Visitor pattern
…

Concurrency Patterns
Active object pattern
Monitor object pattern
Thread pool pattern
…

Format (Subset)

CS 3300 Intro to Software Engineering | Fall 2022 Slide adapted from Alessandro Orso

Name
Intent
Motivation
Applicability
Structure & Participants
Consequences
Implementation
Sample Code
Related Patterns

Factory Method Pattern- Intent & Applicability

CS 3300 Intro to Software Engineering | Fall 2022 Slide adapted from Alessandro Orso

Intent

Allows for creating objects without specifying their class, by invoking a factory
method (i.e., a method whose main goal is to create class instances)

Applicability

• Class can’t anticipate the type of objects it must create
• Class wants its subclasses to specify the type of objects it creates
• Class needs control over the creation of its objects

Factory Method Pattern- Structure & Participants

CS 3300 Intro to Software Engineering | Fall 2022 Slide adapted from Alessandro Orso

Participants
Creator: provides interface for factory method
ConcreteCreator: provides method for creating actual object
Product: Object created by the factory method

Product ConcreteCreator

+ factoryMethod(): Product

Creator

+ factoryMethod(): Product

Structure

Factory Method Pattern - Sample Code

CS 3300 Intro to Software Engineering | Fall 2022 Slide adapted from Alessandro Orso

public class ImageReaderFactory{
public static ImageReader createImageReader (InputStream is){

int imageType = getImageType(is);
switch(imageType){
case ImageReaderFactory.GIF
return new GifReader (is);

case ImageReaderFactory.JPEG
return new JpegReader (is);

}
}

}

Some other examples and implementation of factory method patterns in Java can be found here
and here.

https://www.geeksforgeeks.org/factory-method-design-pattern-in-java/
https://refactoring.guru/design-patterns/factory-method/java/example

Strategy Pattern- Intent & Applicability

CS 3300 Intro to Software Engineering | Fall 2022 Slide adapted from Alessandro Orso

Intent

Allows for switching between different algorithms for accomplishing a task

Applicability

• Different variants of an algorithm
• Many related classes differ only in their behavior

Strategy Pattern- Structure & Participants

CS 3300 Intro to Software Engineering | Fall 2022 Slide adapted from Alessandro Orso

Participants
Context: provides interface to outside world
Algorithm (strategy): common interface for the different algorithms
Concrete Strategy: actual implementation of the algorithms

Context

contextInterface()

ConcreteStrategy B

Algorithm interface ()

Algorithm

Algorithm Interface ()

Structure

ConcreteStrategy A

Algorithm interface ()

Strategy Pattern: Example

CS 3300 Intro to Software Engineering | Fall 2022 Slide adapted from Alessandro Orso

Program

Input: Text file
Output: Filtered File

Four filters

No filtering
Only words that start with “t”
Only words longer than 5 characters
Only words that are palindromes

Strategy Pattern

CS 3300 Intro to Software Engineering | Fall 2022 Slide adapted from Alessandro Orso

Example Demo

Other Common Patterns

CS 3300 Intro to Software Engineering | Fall 2022 Slide adapted from Alessandro Orso

Visitor: A way of separating an algorithm from an object
structure on which it operates (Example)

Decorator: A wrapper that adds functionality to a class:
stackable (Example)

Iterator: Access elements of a collection without knowing
underlying representation (Example)- java.util e.g. object next()

https://www.geeksforgeeks.org/visitor-design-pattern/
https://www.journaldev.com/1540/decorator-design-pattern-in-java-example
https://www.geeksforgeeks.org/how-to-use-iterator-in-java/

Other Common Patterns

CS 3300 Intro to Software Engineering | Fall 2022 Slide adapted from Alessandro Orso

Observer: Notify dependents when
object of interest changes

Proxy: Surrogate controls access to an
object

Choosing a Pattern

CS 3300 Intro to Software Engineering | Fall 2022 Slide adapted from Alessandro Orso

Approach
• Understand your design context
• Examine the patterns catalogue
• Identify and study related patterns
• Apply suitable pattern

Pitfalls
• Selecting wrong patterns
• Abusing patterns

Example Quiz
Imagine that you have to write a class that can have one instance only. Using one of the design
patterns that we discussed in this lesson, write the code of a class with only one method (except for
possible constructors) that satisfies this requirement. Make sure to call the class Singleton.

What pattern should be followed?
Factory

public class Singleton {
private static Singleton instance;
private Singleton() {}
public static Singleton factory() {

if (instance == null) {
instance = new Singleton();

}
return instance;

}
} CS 3300 Intro to Software Engineering | Fall 2022

Default constructor is private:
other classes cannot create
instances of singleton without
calling our factory method

Negative Design Patterns

CS 3300 Intro to Software Engineering | Fall 2022 Slide adapted from Alessandro Orso

Also in Christopher Alexander’s book

How not to (design, manage, etc.)

Also called anti-patterns and bad smells

	Slide Number 1
	Lecture 13: Design Patterns
	History of Design Patterns
	History of Design Patterns
	Patterns Catalogue
	Format (Subset)
	Factory Method Pattern- Intent & Applicability
	Factory Method Pattern- Structure & Participants
	Factory Method Pattern - Sample Code
	Strategy Pattern- Intent & Applicability
	Strategy Pattern- Structure & Participants
	Strategy Pattern: Example
	Strategy Pattern
	Other Common Patterns
	Other Common Patterns
	Choosing a Pattern
	Slide Number 17
	Negative Design Patterns

