
Announcements

1

• Project 1 presentation grades out - Mean: 17.07/16 (max: 19), Stdev:
1.42/16

• GCP Assignment Grades Released - Mean: 4.45/5, Stdev: 1.05/5
• REST Assignment Grades Released - Mean: 3.69/5, Stdev: 1.83/5
• Attendance Grades Updated (until last class)
• Participation Score Updated (until last class) - max score 1.5/3
• Assignment 5: Design due today
• Assignment 6: Test releasing today - also related to Project 1
• GCP coupons for Project 2

• 18 ($50) coupons left – 2 (or 3) per team
• 2 students from each group assigned credits
• More credits to follow if needed

Lecture 15: Software Testing
Nimisha Roy

CS3300 Introduction to Software Engineering

nroy9@gatech.edu

Slides adapted from Alessandro Orso

Some Examples…

CS 3300 Intro to Software Engineering | Fall 2022 Slide adapted from Alessandro Orso

Ariane 5 Failure:
https://www.youtube.com/watch?v=
gp_D8r-2hwk

3

https://www.youtube.com/watch?v=gp_D8r-2hwk

Software is Buggy!

• Cost of bugs: $ 60 B/year
• On average, 1-5 errors per 1K LOC
• Windows 10

• 50M LOC
• 63,000 known bugs at the time of release
• 1.25 per 1,000 lines

• For mass market software 100% correct SW development is
infeasible, but

• We must verify the SW as much as possible

CS 3300 Intro to Software Engineering | Fall 2022 4

Failure, Fault, Error

Error: Cause of a fault. Usually a human error (conceptual, typo, etc.)

Failure: Observable incorrect behavior of a program. Conceptually
related to the behavior of the program, rather than its code.

Fault (bug): Related to the code. Necessary (not sufficient!)
condition for the occurrence of a failure.

CS 3300 Intro to Software Engineering | Fall 2022 5

Failure, Fault, Error: Example

1. double doubleValue(int param) {
2. double result;
3. result = (double) param * param;
4. return(result);
5. }

A call to double(3) returns 9. What is this? The result 9 is a failure- it is an observable behavior

Where is the fault? Line 3

What is the error that caused the fault? N/A. Maybe typo, erroneous copy paste, or
conceptual. Only the developer knows.

CS 3300 Intro to Software Engineering | Fall 2022 6

Approaches to Verification

• Testing (dynamic verification): exercising software to try and
generate failures

• Static analysis: identify (specific) problems statically, that is,
considering all possible executions

• Inspections/reviews/walkthroughs: systematic group review of
program text to detect faults

• Formal verification (proof of correctness): proving that the program
implements the program specification

CS 3300 Intro to Software Engineering | Fall 2022 7

Testing

SoftwareInput Domain D Output Domain O

Test Case: {i ∈ D, o ∈ O}
Test Suite: A set of Test Cases

CS 3300 Intro to Software Engineering | Fall 2022 8

Static Verification

SoftwareInput Domain D Output Domain O

Considers all possible inputs
(execution/behaviors)

CS 3300 Intro to Software Engineering | Fall 2022 9

Inspections/Reviews/Walkthroughs

Human intensive activity
Manual
Group activity
Inspect defects in the artifacts

CS 3300 Intro to Software Engineering | Fall 2022 10

Formal Proof (Of correctness)

Given a formal specification, checks that the code
corresponds to such specification
Sophisticated mathematical analysis

Program Specification

CS 3300 Intro to Software Engineering | Fall 2022 11

Comparison among the 4 techniques

Testing No False Positives Highly Incomplete

Static Verification Considers all program behaviors,
Complete

False Positives, Expensive

Inspections Systematic, Thorough Informal, Subjective

Formal Proofs of
Correctness

Strong Guarantees Complex, Expensive to
build/prove a mathematical
basis

CS 3300 Intro to Software Engineering | Fall 2022 12

Today, Quality Assurance (Verification) is mostly Testing

13

“50% of my company employees are testers, and the rest spend 50% of their
time testing”. Who said that?

[] Mark Zuckerberg

[] Steve Jobs

[] Henry Ford

[] Bill Gates

[] Frank Gehry CS 3300 Intro to Software Engineering | Fall 2022

What is Testing?

Testing == To execute a program with a sample of the input data

• Dynamic technique: program must be executed

• Optimistic approximation:

• The program under test is exercised with a (very small) subset of
all the possible input data

• We assume that the behavior with any other input is consistent
with the behavior shown for the selected subset of input data

CS 3300 Intro to Software Engineering | Fall 2022 14

Successful Tests

-Goodenough and Gerhart (1985). “Towards a
Theory of Test data selection”. IEEE Transactions
of Software Engineering, Jan 1985

CS 3300 Intro to Software Engineering | Fall 2022 15

Testing Granularity Levels
Unit Testing Integration

Big Bang

System

Functional/Non-functional

Acceptance Testing

Customer

Regression Testing

CS 3300 Intro to Software Engineering | Fall 2022 16

Testing Stages

CS 3300 Intro to Software Engineering | Fall 2022 17

Testing Stages

CS 3300 Intro to Software Engineering | Fall 2022 18

Testing Stages

CS 3300 Intro to Software Engineering | Fall 2022 19

Testing Stages

CS 3300 Intro to Software Engineering | Fall 2022 20

Testing Stages

CS 3300 Intro to Software Engineering | Fall 2022 21

Testing Techniques

There are several techniques
• Different processes
• Different artifacts
• Different approaches

There are no perfect techniques
• Testing is a best-effort activity

There is no best technique
• Different contexts
• Complementary strengths and weaknesses
• Trade-offs

CS 3300 Intro to Software Engineering | Fall 2022 22

Testing Techniques

• Based on a description of
the software (specification)

• Cover as much specified
behavior as possible

• Cannot reveal errors due to
implementation details

• Based on the code
• Cover as much coded

behavior as possible
• Cannot reveal errors due

to missing paths

BLACK BOX TESTING WHITE BOX TESTING

Black-Box Testing Example

1. void printNumBytes (param){
2. if (param < 1024) printf(“%d”, param);
3. else printf(‘%d KB” , param/124);
4. }

Specification: Inputs an integer and prints it

Blackbox testing attempts: Inputs +, -, and 0

Will blackbox testing be able to catch the failure? Most likely Not

White-Box Testing Example

1. int fun(int param){
2. int result;
3. result = param/2;
4. return result;
5. }

Specification: inputs an integer param and returns half of its value
if even, its value otherwise

Will whitebox testing be able to catch the failure? No

Blackbox testing attempts: atleast one odd and one even input –
catches failure

	Slide Number 1
	Lecture 15: Software Testing
	Some Examples…
	Software is Buggy!
	Failure, Fault, Error
	Failure, Fault, Error: Example
	Approaches to Verification
	Testing
	Static Verification
	Inspections/Reviews/Walkthroughs
	Formal Proof (Of correctness)
	Comparison among the 4 techniques
	Slide Number 13
	What is Testing?
	Successful Tests
	Testing Granularity Levels
	Testing Stages
	Testing Stages
	Testing Stages
	Testing Stages
	Testing Stages
	Testing Techniques
	Slide Number 23
	Slide Number 24
	Slide Number 25

