
Lecture 16: Black-Box Testing

Nimisha Roy

CS3300 Introduction to Software Engineering

nroy9@gatech.edu

Slides adapted from Alessandro Orso

Black- Box Testing

CS 3300 Intro to Software Engineering | Fall 2022 Slide adapted from Alessandro Orso

Advantages
- Focus on the domain
- No need for the code

- Early test design
- Prevents the highly occurring scenario of

no-time-for-testing
- Catches logic defects
- Applicable at all granularity levels

From Specifications to Test Cases

CS 3300 Intro to Software Engineering | Fall 2022 Slide adapted from Alessandro Orso

FUNCTIONAL
SPECIFICATION

TEST CASES

A systematic Functional-Testing Approach

CS 3300 Intro to Software Engineering | Fall 2022 Slide adapted from Alessandro Orso

FUNCTIONAL
SPECIFICATION

INDEPENDENTLY
TESTABLE FEATURES

RELEVANT INPUTS

TEST CASES
SPECIFICATIONS

TEST CASES

Identify

Derive

Identify

Generate

Decoupling; Automated Sub-tasks; Monitor testing process

A systematic Functional-Testing Approach

CS 3300 Intro to Software Engineering | Fall 2022 Slide adapted from Alessandro Orso

FUNCTIONAL
SPECIFICATION

INDEPENDENTLY
TESTABLE FEATURES

Identify

RELEVANT INPUTS

TEST CASES
SPECIFICATIONS

TEST CASES

Identify

Derive

Generate

Identifying Testable Features

How many independently testable features do we have here?

[] 1

[] 2

[] 3

[] 4

CS 3300 Intro to Software Engineering | Fall 2022

printSum (int a, int b)

Identifying Testable Features

CS 3300 Intro to Software Engineering | Fall 2022

Identify 3 possible independently testable features for a spreadsheet

[]

[]

[]

Statistical Functions

Cell Merging

Chart creation

A systematic Functional-Testing Approach

CS 3300 Intro to Software Engineering | Fall 2022 Slide adapted from Alessandro Orso

FUNCTIONAL
SPECIFICATION

INDEPENDENTLY
TESTABLE FEATURES

RELEVANT INPUTS

TEST CASES
SPECIFICATIONS

TEST CASES

Identify

Derive

Identify

Generate

Test Data Selection

SoftwareInput Domain D Output Domain O

How to select meaningful set of inputs and corresponding outputs?

Powerful machines, why not exhaustive search?

?

CS 3300 Intro to Software Engineering | Fall 2022

Straw-Man Idea: Exhaustive Testing!

How long would it take to exhaustively test the function printSum(int a, int b)?

232 * 232 = 264 ~= 1019 tests

1 test per nanosecond

109 tests per second

1010 seconds overall ~ 600 years
CS 3300 Intro to Software Engineering | Fall 2022

Random Testing

Advantages

• Pick inputs uniformly

• All inputs considered equal

• No designer bias (developer may
develop code based on an
assumption, test cases may also
be biased)

CS 3300 Intro to Software Engineering | Fall 2022

So why not random?

Same as finding many needles in a haystack

CS 3300 Intro to Software Engineering | Fall 2022

So why not random?

CS 3300 Intro to Software Engineering | Fall 2022

Systematic Partition Testing

Failure (valuable test case)

No failure

Failures are sparse in
the space of possible
inputs ...

... but dense in some
parts of the space

1. Identify partitions => 2. Select
inputs from each partition
Number of partitions << number of
inputs

Th
e

sp
ac

e
o

f
p

o
ss

ib
le

 in
p

u
t

va
lu

es
(t

h
e

h
ay

st
ac

k)

Domain is
naturally split into
partitions that are

areas of
the domain

treated
homogeneously
by the software

CS 3300 Intro to Software Engineering | Fall 2022

Example

1. Identify partitions:

- Size < 0 (Designer bias might let you not pick this partition)
- Size = 0
- Size > 0
- Str with length < Size
- Str with length in [Size,Size*2]
- Str with length > Size*2
- …

split (string Str, int Size)

CS 3300 Intro to Software Engineering | Fall 2022

Boundary Values

2. Select interesting Inputs from each
partition

Basic Idea: Errors tend to occur at the
boundary of a sub-domain

=> Select inputs at these boundaries

CS 3300 Intro to Software Engineering | Fall 2022

Example

Some possible partitions:

- Size < 0
- Size = 0
- Size > 0

split (string Str, int Size)

- Str with length < Size
- Str with length in [Size, Size*2]
- Str with length > Size*2

Some possible inputs:

- Size = -1
- Size = 1
- Size = MAXINT

- Str with length = Size- 1
- Str with length = Size
- …

CS 3300 Intro to Software Engineering | Fall 2022

CS 3300 Intro to Software Engineering | Fall 2022

A systematic Functional-Testing Approach

FUNCTIONAL
SPECIFICATION

INDEPENDENTLY
TESTABLE FEATURES

RELEVANT INPUTS

TEST CASES
SPECIFICATIONS

TEST CASES

Identify

Derive

Identify

Generate

Example

split (string Str, int Size)

Some possible inputs:

- Size = -1
- Size = 1
- Size = MAXINT

- Str with length = Size- 1
- Str with length = Size
- …

Test Case Specifications: (combine input values)

- Size = -1, Str with length = -2
- Size = -1, Str with length = -1
- Size = 1, Str with length = 0
- Size = 1, Str with length = 1
- … CS 3300 Intro to Software Engineering | Fall 2022

A systematic Functional-Testing Approach

CS 3300 Intro to Software Engineering | Fall 2022 Slide adapted from Alessandro Orso

FUNCTIONAL
SPECIFICATION

INDEPENDENTLY
TESTABLE FEATURES

RELEVANT INPUTS

TEST CASES
SPECIFICATIONS

TEST CASES

Identify

Derive

Identify

Generate

A Specific Functional Testing Black-Box Approach
The Category-Partition Method

[Ostrand & Balcer, CACM, June 1988]

CS 3300 Intro to Software Engineering | Fall 2022

Specification Test Cases

The Category-Partition Method

CS 3300 Intro to Software Engineering | Fall 2022

1. Identify independently testable features
2. Identify Categories
3. Partition Categories into choices
4. Identify constraints among choices
5. Produce/Evaluate test case specifications
6. Generate test cases from test case specifications

Test Cases

Identify Categories

split (string Str, int Size)

Input Str

- Length

- Content

Input Size

- value

Characteristics of each input element

CS 3300 Intro to Software Engineering | Fall 2022

Partition Categories into choices

split (string Str, int Size)

Input Str

- Length
- 0
- Size-1

- Content
- Only Spaces
- Special characters

Input Size

- Value
- 0
- >0
- <0
- MAXINT
- …

Interesting cases (subdomains) – boundary values

CS 3300 Intro to Software Engineering | Fall 2022

Identify Constraints among choices

Input Str

- Length
- 0

- Content
- Special characters

Input Size

- Value
- <0
- MAXINT

To Eliminate meaningless combinations & To reduce number of test cases

Three types: PROPERTY---- IF, ERROR, SINGLE

PROPERTY zerovalue

If !zerovalue

ERROR

SINGLE

CS 3300 Intro to Software Engineering | Fall 2022

Produce And Evaluate Test Case Specifications

Can be automated

Produces test frames

Example (specify the characteristic of the inputs for that test)

Test frame #45
Input Str

length: size -1
content: special characters

Input Size
value: >0

Produce and evaluate test case
specification
-how many test frames?
-add additional constraints to
reduce the number if required

CS 3300 Intro to Software Engineering | Fall 2022

Generate Test Cases from Test Case Specification

Simple Instantiation of frames

Final result: Set of concrete tests

Example (specify the characteristic of the inputs for that test)

Test case #45
Str = “ABCC!\n\t”
Size = 10

CS 3300 Intro to Software Engineering | Fall 2022

The Category-Partition Method

CS 3300 Intro to Software Engineering | Fall 2022

1. Identify independently testable features
2. Identify Categories
3. Partition Categories into choices
4. Identify constraints among choices
5. Produce/Evaluate test case specifications
6. Generate test cases from test case specifications

Test Cases

DEMO TIME
• Use category partition to generate test frames from a specification file (with

categories, partitions, and constraints)

• Tool called TSLgenerator is used: Developed by team at UC Irvine, Oregon State, and

Georgia Tech

• Download from: https://github.com/alexorso/tslgenerator/tree/master/Binaries

• run the code from command prompt: ./TSLgenerator-win8.exe

• For help: ./TSLgenerator-win8.exe –manpage

• To get number of test cases and write the test frames against your specification file:

./TSLgenerator-win8.exe -c filenameCS 3300 Intro to Software Engineering | Fall 2022

https://github.com/alexorso/tslgenerator/tree/master/Binaries

Next Class:

A Model Based Black-Box Testing Approach =>
E.g. Finite State Machine

White-Box Testing

CS 3300 Intro to Software Engineering | Fall 2022

