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Black- Box Testing
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Advantages
- Focus on the domain
- No need for the code

- Early test design
- Prevents the highly occurring scenario of 

no-time-for-testing
- Catches logic defects
- Applicable at all granularity levels



From Specifications to Test Cases
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A systematic Functional-Testing Approach
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Decoupling; Automated Sub-tasks; Monitor testing process



A systematic Functional-Testing Approach
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Identifying Testable Features

How many independently testable features do we have here?

[   ]  1

[   ]  2

[   ]  3

[   ]  4
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printSum (int a, int b)



Identifying Testable Features

CS 3300 Intro to Software Engineering | Fall 2022

Identify 3 possible independently testable features  for a spreadsheet

[                                                      ]

[                                                      ]

[                                                      ]

Statistical Functions

Cell Merging

Chart creation



A systematic Functional-Testing Approach
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Test Data Selection

SoftwareInput Domain D Output Domain O

How to select meaningful set of inputs and corresponding outputs?

Powerful machines, why not exhaustive search?

?
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Straw-Man Idea: Exhaustive Testing!

How long would it take to exhaustively test the function printSum(int a, int b)?

232 * 232 = 264 ~= 1019 tests 

1 test per nanosecond

109 tests per second

1010 seconds overall ~  600 years
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Random Testing

Advantages

• Pick inputs uniformly

• All inputs considered equal

• No designer bias (developer may 
develop code based on an 
assumption, test cases may also 
be biased)
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So why not random?

Same as finding many needles in a haystack
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So why not random?
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Systematic Partition Testing

Failure (valuable test case)

No failure

Failures are sparse in 
the space of possible 
inputs ...

... but dense in some 
parts of the space

1. Identify partitions => 2. Select 
inputs from each partition
Number of partitions << number of 
inputs
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Domain is 
naturally split into 
partitions that are 

areas of
the domain 

treated 
homogeneously 
by the software
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Example

1. Identify partitions:

- Size < 0 (Designer bias might let you not pick this partition)
- Size = 0
- Size > 0
- Str with length < Size
- Str with length in [Size,Size*2]
- Str with length > Size*2
- …

split (string Str, int Size)
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Boundary Values

2. Select interesting Inputs from each 
partition 

Basic Idea: Errors tend to occur at the 
boundary of a sub-domain

=> Select inputs at these boundaries
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Example

Some possible partitions:

- Size < 0 
- Size = 0
- Size > 0

split (string Str, int Size)

- Str with length < Size
- Str with length in [Size, Size*2]
- Str with length > Size*2

Some possible inputs:

- Size = -1
- Size = 1
- Size = MAXINT

- Str with length = Size- 1
- Str with length = Size
- …
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Example

split (string Str, int Size)

Some possible inputs:

- Size = -1
- Size = 1
- Size = MAXINT

- Str with length = Size- 1
- Str with length = Size
- …

Test Case Specifications: (combine input values)

- Size = -1, Str with length = -2
- Size =  -1, Str with length = -1
- Size = 1, Str with length = 0
- Size = 1, Str with length = 1
- … CS 3300 Intro to Software Engineering | Fall 2022



A systematic Functional-Testing Approach
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A Specific Functional Testing Black-Box Approach
The Category-Partition Method

[Ostrand & Balcer, CACM, June 1988]
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Specification Test Cases



The Category-Partition Method
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1. Identify independently testable features
2. Identify Categories
3. Partition Categories into choices
4. Identify constraints among choices
5. Produce/Evaluate test case specifications
6. Generate test cases from test case specifications

Test Cases



Identify Categories

split (string Str, int Size)

Input Str

- Length

- Content

Input Size

- value

Characteristics of each input element
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Partition Categories into choices

split (string Str, int Size)

Input Str

- Length
- 0
- Size-1

- Content
- Only Spaces
- Special characters

Input Size

- Value
- 0
- >0
- <0
- MAXINT
- …

Interesting cases (subdomains) – boundary values
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Identify Constraints among choices

Input Str

- Length
- 0

- Content
- Special characters

Input Size

- Value
- <0
- MAXINT

To Eliminate meaningless combinations & To reduce number of test cases

Three types: PROPERTY---- IF, ERROR, SINGLE

PROPERTY zerovalue

If !zerovalue

ERROR

SINGLE
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Produce And Evaluate Test Case Specifications

Can be automated

Produces test frames

Example (specify the characteristic of the inputs for that test)

Test frame #45
Input Str

length: size -1
content: special characters

Input Size
value: >0

Produce and evaluate test case 
specification
-how many test frames?
-add additional constraints to 
reduce the number if required
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Generate Test Cases from Test Case Specification

Simple Instantiation of frames

Final result: Set of concrete tests

Example (specify the characteristic of the inputs for that test)

Test case #45
Str = “ABCC!\n\t”
Size = 10
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The Category-Partition Method
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3. Partition Categories into choices
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Test Cases



DEMO TIME
• Use category partition to generate test frames from a specification file (with 

categories, partitions, and constraints)

• Tool called TSLgenerator is used: Developed by team at UC Irvine, Oregon State, and 

Georgia Tech

• Download from: https://github.com/alexorso/tslgenerator/tree/master/Binaries

• run the code from command prompt:  ./TSLgenerator-win8.exe

• For help: ./TSLgenerator-win8.exe –manpage

• To get number of test cases and write the test frames against your specification file: 

./TSLgenerator-win8.exe -c filenameCS 3300 Intro to Software Engineering | Fall 2022

https://github.com/alexorso/tslgenerator/tree/master/Binaries


Next Class:  

A Model Based Black-Box Testing Approach => 
E.g. Finite State Machine

White-Box Testing
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