
Lecture 17: White-Box Testing

Nimisha Roy

CS3300 Introduction to Software Engineering

nroy9@gatech.edu

Slides adapted from Alessandro Orso

White- Box Testing

CS 3300 Intro to Software Engineering | Fall 2022 Slide adapted from Alessandro Orso

Basic Assumption

Executing the faulty statement is a necessary
condition for revealing a fault

2

White- Box Testing

CS 3300 Intro to Software Engineering | Fall 2022 Slide adapted from Alessandro Orso

Advantages

- Based on the code
- Can be measured objectively
- Can be measured automatically

- Can be used to compare test suites
- Allows for covering the coded behavior

3

White- Box Testing

CS 3300 Intro to Software Engineering | Fall 2022 Slide adapted from Alessandro Orso

Different Kinds

- Control-Flow Based
- Data-flow based
- Fault based

4

Let’s Consider Program printSum() Again

CS 3300 Intro to Software Engineering | Fall 2022 Slide adapted from Alessandro Orso

1. printSum (int a, int b) {
2. int result = a+b;
3. if (result > 0)
4. printcol(“red”, result);
5. else if (result < 0)
6. printcol(“blue”, result);
7. }

5

Coverage Criteria

CS 3300 Intro to Software Engineering | Fall 2022 Slide adapted from Alessandro Orso

Defined in terms of
Test requirements - Elements/entities in the code that we need to execute

Result in
Test specifications
Test cases

6

printSum: Test Requirements

CS 3300 Intro to Software Engineering | Fall 2022 Slide adapted from Alessandro Orso

1. printSum (int a, int b) {
2. int result = a+b;
3. if (result > 0)
4. printcol(“red”, result);
5. else if (result < 0)
6. printcol(“blue”, result);
7. }

Req #1

Req #2

7

printSum: Test Specifications

CS 3300 Intro to Software Engineering | Fall 2022 Slide adapted from Alessandro Orso

1. printSum (int a, int b) {
2. int result = a+b;
3. if (result > 0)
4. printcol(“red”, result);
5. else if (result < 0)
6. printcol(“blue”, result);
7. }

Test Spec #1
a + b > 0

Test Spec #2
a + b < 0

8

printSum: Test Cases

CS 3300 Intro to Software Engineering | Fall 2022 Slide adapted from Alessandro Orso

1. printSum (int a, int b) {
2. int result = a+b;
3. if (result > 0)
4. printcol(“red”, result);
5. else if (result < 0)
6. printcol(“blue”, result);
7. }

Test Spec #1
a + b > 0

Test Spec #2
a + b < 0

#1 ((a = [], b = []), (output color = [], output value = []
#2 ((a = [], b = []), (output color = [], output value = []

5 -4 red 1

-1blue0 -1

9

Coverage Criteria: Statement Coverage

CS 3300 Intro to Software Engineering | Fall 2022 Slide adapted from Alessandro Orso

Test
Requirements

Coverage
Measure

Statements in the program

Number of executed Statements

Total number of Statements

10

printSum: statement coverage

Coverage: 0%

TC #1
a == 5
b == -4

1. printSum (int a, int b) {
2. int result = a+b;
3. if (result > 0)
4. printcol(“red”, result);
5. else if (result < 0)
6. printcol(“blue”, result);
7. }

11

printSum: statement coverage

Coverage: 71%

1. printSum (int a, int b) {
2. int result = a+b;
3. if (result > 0)
4. printcol(“red”, result);
5. else if (result < 0)
6. printcol(“blue”, result);
7. }

TC #1
a == 5
b == -4

12

printSum: statement coverage

Coverage: 100%

1. printSum (int a, int b) {
2. int result = a+b;
3. if (result > 0)
4. printcol(“red”, result);
5. else if (result < 0)
6. printcol(“blue”, result);
7. }

TC #2
a == 0
b == -1

TC #1
a == 5
b == -4

13

Statement coverage in Practice

Most used in Industry

“Typical coverage” target is 80 – 90%

Why don’t we aim at 100%

[]
[]

Unreachable code, dead code, complex sequences,
Not enough resources

CS 3300 Intro to Software Engineering | Fall 2022 14

printSum: statement coverage

Coverage is never 100%

1. printSum (int a, int b) {
2. int result = a+b;
3. if (result > 0)
4. printcol(“red”, result);
5. else if (result < 0)
6. printcol(“blue”, result);
7. [else do nothing]
8. }

TC #2
a == -5
b == -8

TC #1
a == 3
b == 9

15

Control Flow Graphs

TF

T

F

Representation for the code that is very convenient when we run our reason about the code and its
structure.
Represents statement with nodes and the flow of control within the code with edges.

CS 3300 Intro to Software Engineering | Fall 2022 16

Next Class

Branch Coverage
Condition Coverage
Branch & Condition Coverage
Modified Condition/Decision Coverage
Test Criteria Subsumption
Industry Standards

CS 3300 Intro to Software Engineering | Fall 2022 17

