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What is Refactoring?
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Program Refactored Program

Applying transformations to a program, with the goal of improving its design without changing its 
functionality

Goal: Keep program readable, understandable, and maintainable. Avoid small problems soon.

Key Feature: Behavior Preserving- make sure the program works after each step; typically small steps



Behavior Preserving
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How can we guarantee it?

Test the code 

In agile we already have lot of test cases, rerun 
before and after refactoring)

But beware: No guarantees!



Behavior Preserving Quiz

Why can’t testing guarantee that a refactoring is behavior preserving?

[   ]  Because testing and refactoring are different activities

[   ]  Because testing is inherently incomplete

[   ]  Because testers are often inexperienced

Program Domain Test Cases
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Why Refactoring?
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Requirements Change – different design needed

Design needs to be improved – so that new 
features can be added; design patterns are often 
a target

Sloppiness by programmers – copy & paste for a 
new method

Refactoring often has the effect of making a design more flexible



Have you used Refactoring Before?

Even renaming a class is a refactoring!

(albeit a trivial one)
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A little bit of history

• Refactoring is something programmers have always done
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• Opdyke’s PhD Thesis (1990) discusses refactoring for SMALLTALK

• Especially important for object-oriented languages

• Increasingly popular due to agile development (makes the changes 
less expensive)



Fowler’s Book – Improving the Design of Existing Code

• Catalogue of Refactorings

• Lot of Bad Smells

• Guidelines on when to apply 
refactoring

• Example of code before and after
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Many Refactorings in Fowler’s Book

• Add parameter

• Change Association

• Reference to Value

• Value to Reference

• Collapse Hierarchy

• Consolidate Conditionals

• Procedures to Objects

• Decompose Conditionals

• Encapsulate Collection

CS 3300 Intro to Software Engineering | Fall 2022

• Encapsulate Downcast

• Encapsulate Field

• Extract Method

• Extract Class

• Inline Class

• Form Template Method

• Hide delegate

• Hide method

• Inline temp

…



Collapse Hierarchy

If a superclass and a subclass are too similar

=> Merge Them

CS 3300 Intro to Software Engineering | Fall 2022



Many Refactorings in Fowler’s Book

• Add parameter

• Change Association

• Reference to Value

• Value to Reference

• Collapse Hierarchy

• Consolidate Conditionals

• Procedures to Objects

• Decompose Conditionals

• Encapsulate Collection

CS 3300 Intro to Software Engineering | Fall 2022

• Encapsulate Downcast

• Encapsulate Field

• Extract Method

• Extract Class

• Inline Class

• Form Template Method

• Hide delegate

• Hide method

• Inline temp

…



Consolidate Conditional Expression

CS 3300 Intro to Software Engineering | Fall 2022

If there are a set of conditionals with the same results

=> Combine and extract them
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Decompose Conditionals
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If a conditional statement is particularly complex (can tell what but obscures why)

 Extract methods from conditions, give the right name to the extracted method

Modify THEN and ELSE part of the conditional



Many Refactorings in Fowler’s Book

• Add parameter

• Change Association

• Reference to Value

• Value to Reference

• Collapse Hierarchy

• Consolidate Conditionals

• Procedures to Objects

• Decompose Conditionals

• Encapsulate Collection

CS 3300 Intro to Software Engineering | Fall 2022

• Encapsulate Downcast

• Encapsulate Field

• Extract Method

• Extract Class

• Inline Class

• Form Template Method

• Hide delegate

• Hide method

• Inline temp

…



Extract Class
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If a class is doing the work of two classes
 Create a new class and move the relevant fields/methods (high cohesion, 

low coupling)
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Inline Class
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If a class is not doing much during system evolution

Move its features into another class and delete this one
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Extract Method
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If there is a cohesive code fragment in a large method
=> Create a method using that code fragment, replace code fragment with a 
call to the method



How can we actually perform Refactoring?

Manually
Also automated using the right tools

Demo Time!!

Using Extract Method Refactoring in Eclipse IDE
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Refactoring Techniques Quiz

When is it appropriate to apply refactoring “extract method”?

[   ]  When there is duplicated code in two or more methods

[   ]  When a class is too large

[   ]  When the names of two classes are too similar

[   ]  When a method is highly coupled with a class other than the one 
where it is defined
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Refactoring Risks

Powerful tool, but…

- May introduce subtle faults 
(regression errors)

- Should not be abused

- Should be used carefully on 
systems in production (affects 
users, new version of software to 
be released soon)
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Cost of Refactoring

Manual Work

Test Development and Maintenance 
(update test cases even in agile 
development)

Documentation Maintenance
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When not to Refactor?

When code is broken (not a way to fix code)

When a deadline is close

When there is no reason to!



• Symptoms that 
indicate deeper 
problems in the code. 

• Should be able to 
sense/sniff it.

• Not bugs, indicate 
weakness in design 
and hence 
maintenance in code.
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A catalogue of Bad Smells
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• Duplicated Code

• Long Method

• Large Class

• Long parameter list

• Divergent Change

• Shotgun Surgery

• Feature Envy

• Data Clumps

• Primitive Obsession

• Switch Statements

• Parallel Interface Hierarchy

• Lazy Class

• Speculative Generality

• Temporary Field

• Message Chains

• Middle Man

• Inappropriate Intimacy

• Incomplete Library Class

• Data Class

• Refused bequest



A few Examples
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Bad Smells Quiz

Which of the following can be considered to be “bad smells” in the 
context of refactoring?

[   ]  The program takes too long to execute

[   ]  Method m() in class c() is too long

[   ]  Classes Cat and Dog are subclasses of class Animal

[   ]  Every time we modify method m1(), we also need to modify method 
m2()
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Refactoring Industry Standards – Industry Survey

Reference 
Article

• Small-scale (floss) refactoring is common ; performed by a single developer; manual
• Multiple Large-scale refactoring also common; takes months; sometimes adding new 

features becomes priority

https://www.researchgate.net/publication/358293134_Industry_Experiences_with_Large-Scale_Refactoring


Refactoring Industry Standards – Industry Survey

Clear need for better tools and 
an opportunity for refactoring 
researchers to make a 
difference in industry

Top Tools: ReSharper (.Net), 
Jdeodrant (Eclipse Plugin), Jetbrains
Rider (.NET), Jetbrains IntelliJ IDEA 
(Java), Spring Tool Suite,  Stepsize



Refactoring Industry Standards – My Survey

• “Don’t touch code if it is working”
• Jetbrains integrated in Visual Studio, paid tools integrated
• Gives helpful prompts while writing code
• When refactoring?

• Approving other developers PR- suggest floss refactoring
• LSR – automated code quality check tools 

• SonarQube - code quality inspection tool before completing a PR- minimum 
of B

• Based on many different rules for different language (650 for Java)  covering 
code smells, test coverage, code security.

• Final verdict: automated tools are very important since there is no time to 
make changes manually, without prompt , or compulsory quality checks


