
Lecture 20: Software Refactoring

Nimisha Roy

CS3300 Introduction to Software Engineering

nroy9@gatech.edu

Slides adapted from Alessandro Orso

What is Refactoring?

CS 3300 Intro to Software Engineering | Fall 2022 Slide adapted from Alessandro Orso

Program Refactored Program

Applying transformations to a program, with the goal of improving its design without changing its
functionality

Goal: Keep program readable, understandable, and maintainable. Avoid small problems soon.

Key Feature: Behavior Preserving- make sure the program works after each step; typically small steps

Behavior Preserving

CS 3300 Intro to Software Engineering | Fall 2022 Slide adapted from Alessandro Orso

How can we guarantee it?

Test the code

In agile we already have lot of test cases, rerun
before and after refactoring)

But beware: No guarantees!

Behavior Preserving Quiz

Why can’t testing guarantee that a refactoring is behavior preserving?

[] Because testing and refactoring are different activities

[] Because testing is inherently incomplete

[] Because testers are often inexperienced

Program Domain Test Cases
CS 3300 Intro to Software Engineering | Fall 2022

Why Refactoring?

CS 3300 Intro to Software Engineering | Fall 2022 Slide adapted from Alessandro Orso

Requirements Change – different design needed

Design needs to be improved – so that new
features can be added; design patterns are often
a target

Sloppiness by programmers – copy & paste for a
new method

Refactoring often has the effect of making a design more flexible

Have you used Refactoring Before?

Even renaming a class is a refactoring!

(albeit a trivial one)

CS 3300 Intro to Software Engineering | Fall 2022

A little bit of history

• Refactoring is something programmers have always done

CS 3300 Intro to Software Engineering | Fall 2022

• Opdyke’s PhD Thesis (1990) discusses refactoring for SMALLTALK

• Especially important for object-oriented languages

• Increasingly popular due to agile development (makes the changes
less expensive)

Fowler’s Book – Improving the Design of Existing Code

• Catalogue of Refactorings

• Lot of Bad Smells

• Guidelines on when to apply
refactoring

• Example of code before and after

CS 3300 Intro to Software Engineering | Fall 2022

Many Refactorings in Fowler’s Book

• Add parameter

• Change Association

• Reference to Value

• Value to Reference

• Collapse Hierarchy

• Consolidate Conditionals

• Procedures to Objects

• Decompose Conditionals

• Encapsulate Collection

CS 3300 Intro to Software Engineering | Fall 2022

• Encapsulate Downcast

• Encapsulate Field

• Extract Method

• Extract Class

• Inline Class

• Form Template Method

• Hide delegate

• Hide method

• Inline temp

…

Collapse Hierarchy

If a superclass and a subclass are too similar

=> Merge Them

CS 3300 Intro to Software Engineering | Fall 2022

Many Refactorings in Fowler’s Book

• Add parameter

• Change Association

• Reference to Value

• Value to Reference

• Collapse Hierarchy

• Consolidate Conditionals

• Procedures to Objects

• Decompose Conditionals

• Encapsulate Collection

CS 3300 Intro to Software Engineering | Fall 2022

• Encapsulate Downcast

• Encapsulate Field

• Extract Method

• Extract Class

• Inline Class

• Form Template Method

• Hide delegate

• Hide method

• Inline temp

…

Consolidate Conditional Expression

CS 3300 Intro to Software Engineering | Fall 2022

If there are a set of conditionals with the same results

=> Combine and extract them

Many Refactorings in Fowler’s Book

• Add parameter

• Change Association

• Reference to Value

• Value to Reference

• Collapse Hierarchy

• Consolidate Conditionals

• Procedures to Objects

• Decompose Conditionals

• Encapsulate Collection

CS 3300 Intro to Software Engineering | Fall 2022

• Encapsulate Downcast

• Encapsulate Field

• Extract Method

• Extract Class

• Inline Class

• Form Template Method

• Hide delegate

• Hide method

• Inline temp

…

Decompose Conditionals

CS 3300 Intro to Software Engineering | Fall 2022

If a conditional statement is particularly complex (can tell what but obscures why)

 Extract methods from conditions, give the right name to the extracted method

Modify THEN and ELSE part of the conditional

Many Refactorings in Fowler’s Book

• Add parameter

• Change Association

• Reference to Value

• Value to Reference

• Collapse Hierarchy

• Consolidate Conditionals

• Procedures to Objects

• Decompose Conditionals

• Encapsulate Collection

CS 3300 Intro to Software Engineering | Fall 2022

• Encapsulate Downcast

• Encapsulate Field

• Extract Method

• Extract Class

• Inline Class

• Form Template Method

• Hide delegate

• Hide method

• Inline temp

…

Extract Class

CS 3300 Intro to Software Engineering | Fall 2022

If a class is doing the work of two classes
 Create a new class and move the relevant fields/methods (high cohesion,

low coupling)

Many Refactorings in Fowler’s Book

• Add parameter

• Change Association

• Reference to Value

• Value to Reference

• Collapse Hierarchy

• Consolidate Conditionals

• Procedures to Objects

• Decompose Conditionals

• Encapsulate Collection

CS 3300 Intro to Software Engineering | Fall 2022

• Encapsulate Downcast

• Encapsulate Field

• Extract Method

• Extract Class

• Inline Class

• Form Template Method

• Hide delegate

• Hide method

• Inline temp

…

Inline Class

CS 3300 Intro to Software Engineering | Fall 2022

If a class is not doing much during system evolution

Move its features into another class and delete this one

Many Refactorings in Fowler’s Book

• Add parameter

• Change Association

• Reference to Value

• Value to Reference

• Collapse Hierarchy

• Consolidate Conditionals

• Procedures to Objects

• Decompose Conditionals

• Encapsulate Collection

CS 3300 Intro to Software Engineering | Fall 2022

• Encapsulate Downcast

• Encapsulate Field

• Extract Method

• Extract Class

• Inline Class

• Form Template Method

• Hide delegate

• Hide method

• Inline temp

…

Extract Method

CS 3300 Intro to Software Engineering | Fall 2022

If there is a cohesive code fragment in a large method
=> Create a method using that code fragment, replace code fragment with a
call to the method

How can we actually perform Refactoring?

Manually
Also automated using the right tools

Demo Time!!

Using Extract Method Refactoring in Eclipse IDE

CS 3300 Intro to Software Engineering | Fall 2022

Refactoring Techniques Quiz

When is it appropriate to apply refactoring “extract method”?

[] When there is duplicated code in two or more methods

[] When a class is too large

[] When the names of two classes are too similar

[] When a method is highly coupled with a class other than the one
where it is defined

CS 3300 Intro to Software Engineering | Fall 2022

CS 3300 Intro to Software Engineering | Fall 2022

Refactoring Risks

Powerful tool, but…

- May introduce subtle faults
(regression errors)

- Should not be abused

- Should be used carefully on
systems in production (affects
users, new version of software to
be released soon)

CS 3300 Intro to Software Engineering | Fall 2022

Cost of Refactoring

Manual Work

Test Development and Maintenance
(update test cases even in agile
development)

Documentation Maintenance

CS 3300 Intro to Software Engineering | Fall 2022

When not to Refactor?

When code is broken (not a way to fix code)

When a deadline is close

When there is no reason to!

• Symptoms that
indicate deeper
problems in the code.

• Should be able to
sense/sniff it.

• Not bugs, indicate
weakness in design
and hence
maintenance in code.

CS 3300 Intro to Software Engineering | Fall 2022

A catalogue of Bad Smells

CS 3300 Intro to Software Engineering | Fall 2022

• Duplicated Code

• Long Method

• Large Class

• Long parameter list

• Divergent Change

• Shotgun Surgery

• Feature Envy

• Data Clumps

• Primitive Obsession

• Switch Statements

• Parallel Interface Hierarchy

• Lazy Class

• Speculative Generality

• Temporary Field

• Message Chains

• Middle Man

• Inappropriate Intimacy

• Incomplete Library Class

• Data Class

• Refused bequest

A few Examples

CS 3300 Intro to Software Engineering | Fall 2022

Bad Smells Quiz

Which of the following can be considered to be “bad smells” in the
context of refactoring?

[] The program takes too long to execute

[] Method m() in class c() is too long

[] Classes Cat and Dog are subclasses of class Animal

[] Every time we modify method m1(), we also need to modify method
m2()

CS 3300 Intro to Software Engineering | Fall 2022

Refactoring Industry Standards – Industry Survey

Reference
Article

• Small-scale (floss) refactoring is common ; performed by a single developer; manual
• Multiple Large-scale refactoring also common; takes months; sometimes adding new

features becomes priority

https://www.researchgate.net/publication/358293134_Industry_Experiences_with_Large-Scale_Refactoring

Refactoring Industry Standards – Industry Survey

Clear need for better tools and
an opportunity for refactoring
researchers to make a
difference in industry

Top Tools: ReSharper (.Net),
Jdeodrant (Eclipse Plugin), Jetbrains
Rider (.NET), Jetbrains IntelliJ IDEA
(Java), Spring Tool Suite, Stepsize

Refactoring Industry Standards – My Survey

• “Don’t touch code if it is working”
• Jetbrains integrated in Visual Studio, paid tools integrated
• Gives helpful prompts while writing code
• When refactoring?

• Approving other developers PR- suggest floss refactoring
• LSR – automated code quality check tools

• SonarQube - code quality inspection tool before completing a PR- minimum
of B

• Based on many different rules for different language (650 for Java) covering
code smells, test coverage, code security.

• Final verdict: automated tools are very important since there is no time to
make changes manually, without prompt , or compulsory quality checks

