
Announcements
• Last Lecture Today

• Project 2 Progress Report Grades Released

• Mean: 4.65/5 , Standard Deviation: 0.26/5

• Assignment 6 Grades Released

• Mean: 5.225/5 , Standard Deviation: 0.28/5

• Project 2 Report (GitHub page link) due November 29 at 11:59 pm

• Share your private GitHub repository with the instruction team for “Project Codes
Deliverable”.

• Nimisha-Roy (nimisha.roy9@gmail.com); tanujbohra (tanuj.bohra97@gmail.com)

• Next Class we will have presentation of 4 teams randomly (will send announcement soon).
MAKE SURE TO HAVE A DEMO. 15-minute presentation explaining your software. ALL
TEAMS SHOULD SUBMIT THEIR PRESENTATION VIA EMAIL TO ME BY NOV 29 12 PM EST.

• Final extra credit Opportunity: +1% to everyone if 75% of class fill out the CIOS Survey.

mailto:nimisha.roy9@gmail.com
mailto:tanuj.bohra97@gmail.com

Lecture 21: No Silver Bullet (1986)

Nimisha Roy

CS3300 Introduction to Software Engineering

nroy9@gatech.edu

Slides adapted from Mahdi Roozbahani

No Silver Bullet - Essence and Accident in Software
Engineering

Widely Discussed article written by Turing Award
winner Fred Brooks in 1987 discussing “Why is SE
so hard?”

Reference: http://worrydream.com/refs/Brooks-NoSilverBullet.pdf

http://worrydream.com/refs/Brooks-NoSilverBullet.pdf

Silver Bullet

CS 3300 Intro to Software Engineering | Fall 2022

Silver Bullet: A single technique or technology that by itself can deliver one
order-of magnitude improvement to some aspect of software development

One order of magnitude means 10 times

The phrase typically appears with an expectation that some new technology
or practice will easily cure a major prevailing problem

No Silver Bullet - Essence and Accident in Software
Engineering

CS 3300 Intro to Software Engineering | Fall 2022

“There is no single development, in either
technology or management technique, which by
itself promises even one order-of-magnitude
improvement within a decade in productivity, in
reliability, in simplicity”

No Silver Bullet - Essence and Accident in Software
Engineering

CS 3300 Intro to Software Engineering | Fall 2022

“We cannot expect ever to see two-fold gains every
two years in software development, as there is in
hardware development” (Moore's law)

No Silver Bullet - Moore’s Law

• Started with an observation
by Moore (co-founder of
Intel) that number of
transistors on microchips
doubles every 2 years.

• Now describes a driving
force of technological and
social change, productivity,
and economic growth.
(hard drive cost per GB,
cost per base of DNA
sequencing…..)

No Silver Bullet - Comparison with Hardware

• The anomaly is not that software progress is so slow, but that
computer hardware progress is so fast

• No other technology since civilization began has seen six orders of
magnitude price-performance gain in 30 years [written in 1986]

• In no other technology can one choose to take the gain in either
improved performance or in reduced costs.

CS 3300 Intro to Software Engineering | Fall 2022

No Silver Bullet - Why?

CS 3300 Intro to Software Engineering | Fall 2022

• Brooks divides the problems facing Software Engineering into 2
categories

• Essence: Difficulties inherent, or intrinsic, in the nature of the software

• Accidents: Difficulties related to the production of software

• Brooks argues that most techniques attack the accidents of
software engineering, whereas essence constitute 90% of the
problems.

Essential and Accidental Complexity

Essence:
Domain Complexity
• Accounting Software – the complexity involved in accounting by nature
• Rocketry managing software – complex functionality related to the

functioning of a rocket

Accident:
Implementation Complexity
• Bugs
• Constructs that don’t exactly fit the way the domain wants them to/

Corner cases
• Threads, complexity of using AJAX requests

Why addressing “essential” problems are so difficult?

Like physical hardware limits (e.g., speed of light, heat
dissipation), there are SE problems that will never be solved

4 Issues of essential difficulty:

1. Complexity

2. Conformity

3. Changeability

4. Invisibility
CS 3300 Intro to Software Engineering | Fall 2022

Complexity

• SW is far more complex for their size than any other
human construct because no 2 parts are alike

• SW is far more complex than HW (computers, buildings, or
automobiles, repeated elements abound)

• 16-bit word in HW -> 216 states
• State of SW is virtually infinite => problems verifying it

CS 3300 Intro to Software Engineering | Fall 2022

Complexity (cont’d)

• Scaling up not merely a repetition of the same elements in
larger sizes, but an increase in the number of different
elements

• Elements interact with each other in some non-linear
fashion, so the complexity of the whole increases more
than linearly

CS 3300 Intro to Software Engineering | Fall 2022

• Complexity is an essential property: descriptions of a software entity
that abstract away its complexity often abstract away its essence

• For three centuries, mathematics and the physical sciences made
great strides by constructing simplified models of complex
phenomena, deriving properties from the models, and verifying those
properties by experiment. This paradigm worked because the
complexities ignored in the models were not the essential properties
of the phenomena. It does not work when the complexities are the
essence.

Complexity (cont’d)

CS 3300 Intro to Software Engineering | Fall 2022

• Increased complexity => increased communication difficulty => SW flaws,
schedule delays, costs, …

• Complexity => difficulty of enumerating and understanding, all possible
SW states => unreliability

• Complexity of structure => increased difficulty in adding functionality
without introducing side effects

• Complexity of structure => unvisualized states that constitute
reliability/security trapdoors

• …

Complexity (cont’d)

CS 3300 Intro to Software Engineering | Fall 2022

• Management, communication, and personnel turnover
exacerbate these problems:
• Difficult to overview, understand whole product,

impeding conceptual integrity
• How can you estimate without understanding?
• How can you maintain without understanding?

Complexity (cont’d)

CS 3300 Intro to Software Engineering | Fall 2022

Conformity

• Physics deals with terribly complex objects even at the "fundamental"
particle level. The physicist labors on, however, in a firm faith that there are
unifying principles to be found. Einstein argued that there must be simplified
explanations of nature, because God is not capricious or arbitrary. No such
faith comforts the software engineer.

• To the many (arbitrary) human institutions and systems to which it
interfaces, SW is embedded in a mix of applications, users, laws, and
machines. Conceived as most conformable

• Consider designing a software system to support an existing business process
when a new VP arrives at the company. The VP decides to “make a mark” on
the company and changes the business process. Our system must now
conform to the (from our perspective) arbitrary changes imposed by the VP

CS 3300 Intro to Software Engineering | Fall 2022

Conformity (cont’d)

• Other instances of conformity

• Adapting to a pre-existing environment

• Such as integrating with legacy systems

• And if the environment changes (for whatever reason), you can bet
that the software will be asked to change in response

• Implementing regulations or rules that may change from year to year

• Dealing with a change in vendor imposed by your customer

• Main Point: It is almost impossible to plan for arbitrary change;

• Instead, you just have to wait for it to occur and deal with it when it
happens

CS 3300 Intro to Software Engineering | Fall 2022

Changeability

• Software is constantly asked to change

• Other things are too, however, manufactured things are rarely changed
after they have been created

• Instead, changes appear in later models
• Automobiles are recalled only infrequently
• Buildings are expensive to remodel

CS 3300 Intro to Software Engineering | Fall 2022

Changeability (cont’d)

• Pressure to change is greater
• Reality changes
• Useful SW will encourage new requests
• Long lifetime (~15 yrs) vs. HW (~4 yrs)
• SW changes viewed as “free”

• Contrast with tangible domains
• Imagine asking for a new layout of a house after the

foundation has been poured.
• Buildings can be changed. But change understood by all

to be time-consuming and expensive (and messy)
CS 3300 Intro to Software Engineering | Fall 2022

Invisibility

CS 3300 Intro to Software Engineering | Fall 2022

Invisibility (cont’d)

CS 3300 Intro to Software Engineering | Fall 2022

Essence or Accident?

[] A bug in a financial system is discovered that came from a conflict in
state/federal regulations on one type of transaction

[] A program developed in two weeks using a whiz bang new application
framework is unable to handle multiple threads since the framework is
not thread safe

[] A new version of a compiler generates code that crashes on 32-bit
architectures; the previous version did not

[] A fickle customer submits 10 change requests per week after receiving
the first usable version of a software system

E

E

A

A

CS 3300 Intro to Software Engineering | Fall 2022

Past Breakthroughs Solved Accidental Difficulties (from
Brooks)

• High-level languages (vs. bits, registers, conditions, branches)
• enhance/ease representation, improve vocabulary and how to think about

problems

• Time-sharing (vs. batch programming)
• provided quick turnaround benefits, immediacy, less context switch

• Unified programming environments
• help us better manage conceptual constructs, use programs together, but not

figure out what they should be

=> All addressed accident, not essence difficulties

Hopes for the Silver [in 1986]
• Several “hopes for the silver”, but they only made small improvements (not

10x)

• Ada

• In the end, “just” a high-level language

• Good for retraining programmers in modern design and modularization
techniques

• Does not eliminate essential complexity

• OOP

• Abstract data types (information hiding)

• Hierarchical interfaces and refined subtypes (more information)

• Higher order of accidental difficulty removed by both. Same as above.

• PC’s increasing power

• Speeds up machine-bound activities, but does not simplify the tasks

Hopes for the Silver [in 2012]

• AI - two meanings

• Use of computers to solve problems previously solved by humans (not really AI)

• Expert systems (most advanced AI)

• Expert Systems

• A computer system emulating the decision-making ability of a human expert. Designed to
solve complex problems by reasoning through bodies of knowledge, represented mainly
as if–then rules rather than through conventional procedural code. Application
independent

• Could help by suggesting designs, testing strategies, etc.

• Needs good knowledge base

• May help novice programmers benefit from the accumulated wisdom of experts

• Automatic programming

• No black magic, but somehow successful today

• Examples?

Domain Specific Languages; Program Generator

https://en.wikipedia.org/wiki/Domain-specific_language
https://yanniss.github.io/pepm04.pdf

Hopes for the Silver (cont’d)

• Graphical programming

• Helpful, but SW is hard to visualize

• Lots of research in this area. New interesting articles published.

• Program verification

• Great, but does not mean error free (e.g., errors in proofs or specifications)

• Plus, it is complex

• Environments and tools

• Hierarchical file systems, uniform file formats, generalized tools, language-
based editors, integrated database systems to track details, …

• Very useful, but still attacking the accidental complexity

• Must attack essential complexity, which is 90% of SW

CS 3300 Intro to Software Engineering | Fall 2022

Promising Attacks on the Essence

• Buy vs. build

• Hard part is requirements, specifications and design, not
implementation; amount and quality of off-the-shelf SW is increasing

• Iterative requirements refinement and rapid prototyping

• Clients do not know what they want

• Incremental development

• Grow, not build

• Cultivate great designers (focus on people)
• Better SE training

• Career mentors and career development paths

• Did they work?
CS 3300 Intro to Software Engineering | Fall 2022

A New Silver Bullet?

• The World Wide Web? – some claim productivity increased
10-fold due to WWW.

• Automated testing?- some claim most regression errors are
avoided.

• Open-source development?

• Agile Software Development paired with Git.

• Something else?

CS 3300 Intro to Software Engineering | Fall 2022

