
CS3300: Introduction to Software Engineering Nimisha Roy

This document comprises branching and merging steps covered in class on 9/1, but

also has some additional steps to resolve conflicts between 2 branches that could

not be covered in class.

IMPORTANCE

Branching means making a copy of the current project so that we can work on that

copy independently from the other copies, be it other branches or the main branch.

Then we can decide whether we want to keep both branches or merge them at

some point. This is particularly useful because if you think about how we generally

develop software, we work with artifacts. We might need to create a separate copy

of your work space to do some experiments, for example. You want to change

something in the code; you are not sure it will work out, and you do not want to

touch your main copy (main branch). So that is the perfect application for

branching. If you are happy with the changes, you will merge that branch with the

original one; If you are not happy with the changes, you will delete that branch.

GIT STEPS

Git branch: to see which branches are present. (Until this point of the

demonstration, we only had one main branch)

Git branch newBranch : to create a new branch

Git branch: We have two branches now, with the current branch (main) as star

marked

Git checkout newBranch: To switch to newBranch

Git checkout -b testing: To create a new branch and switch to it

Create a new file called testfile in testing branch, and push it to the remote

repository

Echo this is a testfile > testFile

Git add testFile – staged state

Git commit -m "test file added" – committed state

Move to the new branch and merge testing branch with main branch since we

are happy with the changes made in the testing branch

CS3300: Introduction to Software Engineering Nimisha Roy

Git checkout main

Git merge testing: merge testing branch with main

Let us delete the testing branch because it is no longer of any use

Git branch -d testing

PORTION NOT COVERED IN CLASS
So, something that might happen when you merge a branch is that you might have
conflicts, such as changing the same file in two different branches. Let's see an
example of that.

Move to the main branch and change newfile there

Git branch : It shows we have two branches, main and newBranch

Notepad newfile : Change newfile

Git commit -a -m "new file changed in main branch"

Move to the newBranch branch and change newfile there

Git checkout newBranch : Change newfile again

Git commit -a -m "new file changed in newBranch"

Now, newfile is modified independently in newBranch and main branch

Move to the main branch and merge newBranch

Git checkout main

Git merge newBranch

Conflict message displayed since both branches have independent copies of newfile

How to Resolve:

Open newfile

You will see annotations showing the different versions in both branches. You can

edit that file, decide which version to keep and which to delete, delete the

annotations and save the file.

CS3300: Introduction to Software Engineering Nimisha Roy

Git commit -a -m "merged version of newfile" – Git already has merged the

branches.

Git branch -d newBranch: We have now resolved the conflict and can delete the

newBranch

